Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Efecto de la labranza en la estabilidad estructural y resistencia a la penetración en un Inceptisol sembrado con arracacha (Arracacia xanthorrhiza Bancroft) en Boyacá

Resumen

En el municipio de Boyacá (departamento de Boyacá, Colombia), la producción de arracacha constituye una fuente de ingresos importante para los agricultores. Debido a la escasa información sobre el paquete tecnológico para este cultivo, se estudió el efecto de diferentes sistemas de labranza (labranza mínima, labranza convencional y labranza vertical) sobre algunas de las principales propiedades físicas de un suelo Typic Dystrudepts, con pendiente del 3%, tipo de paisaje montañoso y tipo de relieve lomerío; durante cuatro épocas de muestreo (antes de la preparación (E1), después de la preparación (E2), 100 días después de la siembra (E3) y 180 días después de la siembra (E4)). El diseño fue en bloques completamente aleatorizados, donde cada bloque correspondió a un tipo de labranza, y los tratamientos fueron dos materiales de arracacha (Yema de huevo y Paliverde). Los valores más bajos de resistencia a la penetración se presentaron en la labranza vertical a los 12,5; 17,5 y 20 cm, con valores de 262,8; 810,8 y 1337,5 kPa respectivamente, del mismo modo, este tipo de labranza presentó una mayor estabilidad estructural y un gran porcentaje de distribución de agregados de tamaño entre 1 y 3 mm, con un valor promedio de 31,4%, frente a la labranza convencional y la labranza mínima, con valores de 22% y 25,2% respectivamente, lo cual favoreció el desarrollo radicular de las plantas de arracacha. La mayor diferencia entre los tipos de labranza para la distribución por tamaño de agregados se presentó a los 100 días después de la siembra. Los materiales de arracacha evaluados no afectaron de forma significativa ninguno de los parámetros del suelo.

Palabras clave

Diámetro ponderado medio, Estabilidad estructural, Yema de huevo, Paliverde, Agregados

PDF

Citas

  1. Alaouit, A., J. Lipiec y H.H. Gerke. 2011. A review of the changes in the soil pore system due to soil deformation: a hydrodynamic perspective. Soil Tillage Res. 115-116, 1-15.
  2. Alvarado, A. y L. Ochoa. Tecnologías locales de producción de arracacha (Arracacia xanthorrhiza Bancroft) en el municipio de Boyacá, departamento de Boyacá. Rev. UDCA Act. Div. Cient. 13(1), 125-133.
  3. Awad, Y.M., E. Blagodatskaya, Y.S. Ok y Y. Kuzyakov. 2013. Effects of polyacrylamide, biopolymer and biochar on the decomposition of 14C-labelled maize residues and on their stabilization in soil aggregates. Eur. J. Soil Sci. 64, 488-499. Doi: 10.1111/ejss.12034
  4. Barthes, B. y E. Roose. 2002. Aggregate stability as an indicator of soil susceptibility to runoff and erosion; validation at several levels. Catena 47, 133-149. Doi: 10.1016/S0341-8162(01)00180-1
  5. Baumgarten, W., T. Neugebauer, E. Fuchs y R. Horn. 2012. Structural stability of Marshland soils of the riparian zone of the tidal Elbe River. Soil Tillage Res. 125, 80-88. Doi: 10.1016/j.still.2012.06.002
  6. Botta, G., D. Jorajuria y L. Draghi. 2002. Influence of the axle load, tire size and configuration, on the compaction of a freshly tilled clayey soil. J. Terramechanics 39, 47-54. Doi: 10.1016/S0022-4898(02)00003-4
  7. Casanova, E. y D. Lobo. 2007. Relación entre la física y la fertilidad de los suelos. Venesuelos 15(1), 42-56.
  8. Cortés, C., J. Camacho-Tamayo y F. Leiva. 2013. Análisis multivariado del comportamiento espacial y temporal de la resistencia del suelo a la penetración. Acta Agron. 62(3), 268-278.
  9. Dexter, A.R. y E.A. Czyż. 2011. Soil crumbling during tillage as a function of soil organic matter content. Int. Agrophysics (25), 215-221.
  10. EOT. Esquema de Ordenamiento Territorial del municipio de Boyacá. 2003. Alcaldía Municipal de Boyacá, Boyacá.
  11. Feinan, H., X. Chenyang, L. Hang, L. Song, Y. Zhenghong, L. Yue y H. Xinhua. 2015. Particles interaction forces and their effects on soil aggregates breakdown. Soil Tillage Res. 147, 1-9. Doi: 10.1016/j.still.2014.11.006
  12. Ferreira, A.J.D., C. Coelho, R. Walsh, R.A. Shakesby, A. Ceballos y S. Doerr. 2000. Hydrological implications of soil water-repellency in Eucalyptus globulus forests, north-central Portugal. J. Hydrology 231-232, 165-177.
  13. Forsythe, W., F. Sancho y M. Villatoro. 2005. Efecto de la compactación de los suelos sobre el rendimiento de maíz en tres localidades de Costa Rica. Agron. Costar. 29(3), 175-185.
  14. García-Orenes, F., A. Cerda, J. Mataix-Solera, C. Guerrero, M. Bodi, V. Arcenegui, R. Zornoza y J. Sempere. 2009. Effects of agricultural management on Surface soil propierties and soil-water losses in Eastern Spain. Soil Tillage Res. 106, 117-123.
  15. Gentile, R., B. Vanlauwe y J. Six. 2011. Litter quality impacts short- but not long-term soil carbon dynamics in soil aggregate fractions. Ecol. Applications 21, 695-703. Doi: 10.2307/23021619
  16. González, O., C. Iglesias, M. Herrera, A. López y A. Iznaga. 2008. Efecto de la humedad y la presión sobre el suelo en la porosidad total de un Rhodic Ferralsol. Rev. Cienc. Téc. Agropecu. 17(2), 50-54.
  17. Grosbellet, C., L. Vidal-Beaudet, V. Caubel y S. Charpentier. 2011. Improvement of soil structure formation by degradation of coarse organic matter. Geoderma 162(1), 27-38. Doi: 10.1016/j.geoderma. 2011.01.003
  18. Gysi, M., V. Maeder y P. Weisskopf. 2001. Pressure distribution underneath tires of agricultural vehicles. Transactions of ASA 44(6), 1385-1389. Doi: 10.13031/2013.7001
  19. Hamza M. y W. Anderson W. 2005. Soil compaction in cropping systems: A review of the nature, causes and possible solutions. Soil Tillage Res. 82, 121-145. Doi: 10.1016/j.still.2004.08.009
  20. Henríquez, C., O. Ortiz, K. Largaespada, P. Portuguez, M. Vargas, P. Villalobos y D. Gómez. 2011. Determinación de la resistencia a la penetración, al corte tangencial, densidad aparente y temperatura en un suelo cafetalero, Juan Viñas, Costa Rica. Agronomía Costarricense 35(1), 175-184.
  21. IGAC. 2006. Métodos analíticos de laboratorio de suelos. 6ª ed. Instituto Geográfico Agustín Codazzi, Bogotá.
  22. Keller, T. y M. Lamande. 2010. Challenges in the development of analytical soil compaction models. Soil Tillage Res. 111, 54-64. Doi: 10.1016/j.still.2010.08.004
  23. Keller, T., M. Lamande, S. Peth, M. Berli, J.-Y. Delenne, W. Baumgarten, W. Rabbel, F. Radjaı, J. Rajchenbach, A.P.S. Selvadurai y D. Or. 2013. An interdisciplinary approach towards improved understanding of soil deformation during compaction. Soil Tillage Res. 128, 61-80. Doi: 10.1016/j.still.2012.10.004
  24. Kim, H., S.H. Anderson, P.P. Motavalli y C.J. Gantzer. 2010. Compaction effects on soil macropore geometry and related parameters for an arable field. Geoderma 160, 244-251. Doi: 10.1016/j.geoderma.2010.09.030
  25. Kirby, J., B. Blunden y C. Trein. 1997. Simulating soil deformation using a critical state model: II. Soil compaction beneath tyres and tracks. Eur. J. Soil Sci. 48, 59-70. Doi: 10.1111/j.1365-2389.1997.tb00185.x
  26. Kirsch, R. 2010. Petrophysical properties of permeable and low-permeable rocks. pp. 1-22. En: Kirsch, R. (ed.). Groundwater geophysics. 2nd ed. Springer-Verlag, Berlin.
  27. Lamandé, M. y P. Schjonning. 2011. Transmission of vertical stress in a real soil profile. Part III. Effect of soil water content. Soil Tillage Res. 114, 78-85. Doi: 10.1016/j.still.2010.10.001
  28. Lipiec, J. M. Hajnos y R. Świeboda. 2012. Estimating effects of compaction on pore size distribution of soil aggregates by mercury porosimeter. Geoderma 179-180, 20-27. doi:10.1016/j.geoderma.2012.02.014
  29. Pagliai, M., A. Marsili, P. Servadio, N. Vignozzi y S. Pellegrini. 2003. Changes in some physical properties of a clay soil in Central Italy following the passage of rubber tracked and wheeled tractors of medium power. Soil Tillage Res. 73, 119-129. Doi: 10.1016/S0167-1987(03)00105-3
  30. Ramírez-López, L., A. Reina-Sánchez y J. Camacho-Tamayo. 2008. Variabilidad espacial de atributos físicos de un Typic haplustox de los llanos orientales de Colombia. Eng. Agríc. 28(1), 55-63.
  31. Lal, R. y M.K. Shukla. 2004. Principles of soil physics. Marcel Dekker, New York, NY.
  32. Safar, S., H. González y N. Cappelli. 2011. Efecto de los arados rotativos sobre algunas propiedades físicas de un suelo franco arcilloso. CES Medicina Veterinaria y Zootecnia 6(1), 32-44.
  33. Siczek, A. y J. Lipiec. 2011. Soybean nodulation and nitrogen fixation in response to soil compaction and surface straw mulching. Soil Tillage Res. 114, 50-56.
  34. Terminiello A., R. Balbuena, M. Ariata, J. Hilbert, J. Claverie J. y D. Jorajuria. 2007. Compactación inducida por el tránsito vehicular sobre un suelo en producción hortícola. Rev. Bras. Eng. Agríc. Amb. 4(2), 290-293. Doi: 10.1590/S1415-43662000000200027
  35. Volveras, M. y C. Amezquita. 2009. Estabilidad Estructural del suelo bajo diferentes sistemas y tiempo de uso en laderas Andinas de Nariño, Colombia. Acta Agron. 58(1), 35-39.
  36. Yu, W.Z., T. Liu, J. Gregory, G.B. Li, H.J. Liu, y J.H. Qu. 2012. Aggregation of nano-sized alum–humic primary particles. Sep. Purif. Technol. 99, 44-49. Doi: 10.1016/j.seppur.2012.08.017
  37. Zhang, W., J. Crittenden, K. Li y Y. Chen. 2012. Attachment efficiency of nano-particle aggregation in aqueous dispersions: modeling and experimental validation. Environ. Sci. Technol. 46, 7054-7062. Doi: 10.1021/es203623z

Descargas

Los datos de descargas todavía no están disponibles.

Artículos más leídos del mismo autor/a

1 2 3 > >> 

Artículos similares

1 2 3 > >> 

También puede {advancedSearchLink} para este artículo.