Skip to main navigation menu Skip to main content Skip to site footer

Proofs and generalizations of the pythagorean theorem

Abstract

This article explores a topic developed by a group of researchers of the Science and Technology Teaching School of Instituto Federal de Pernambuco, Brazil (IFPE), in assistance to the development of the Mathematics Practical and Teaching Laboratory of the distance learning Teaching Licensure, financed by the Universidad Abierta de Brasil. In this article, we describe the peculiarities present in the proofs of the Pythagorean theorem with the purpose of illustrating some of these methods. The selection of these peculiarities was founded and based on the comparison of areas by means of the superimposition of geometrical shapes and used several different class resources. Some generalizations of this important theorem in mathematical problem-solving are also shown.

Keywords

pythagorean theorem, geometric shapes, proofs, generalizations.

PDF (Español)

References

  1. Bastian, Irma Verri. (2000). O Teorema de Pitágoras. Dissertação. São Paulo:
  2. Pontíficia Universidade Católica de São Paulo. In: http://www.pucsp.br/pos/edmat/ma/dissertacao/irma_verri_bastian.pdf Belfort, E. & Vasconcelos C. B.(2005) Discutindo Práticas em Matemática. Seed. Tv escola salto / para o futuro. Brasília. DF.
  3. Berté, A. (1995). Différents ordres de présentation des premières notions de géometrie métrique dans lénseignement secondaire. Recherches em didactique des mathématiques, vol.15, n. 3, PP. 83-130. La Pensée Sauvage Editions. Cintra,C.O. & Cintra, R.J.S. (2003). O Teorema de Pitágoras. Recife: O Autor.Gerdes, Paulus. (1992). Pitágoras africano: um estudo em cultura e educaçãomatemática. Moçambique: Instituto Superior Pedagógico.
  4. Brasil. (1998), Ministério da Educação e Cultura. Secretaria da Educação Fundamental. Parâmetros Curriculares Nacionais. Brasília.
  5. Kaleff, A.M.R.M.; Rei, D.M. e Garcia, S.S. (1997). Quebra-cabeças geométricos e formas planas. Niteroi: EDUFF.
  6. Madsen, Rui.(1993) Descobrindo padrões pitagóricos: geométricos e numéricos. São Paulo: Atual.
  7. Polya, George. (1992). Cómo plantear y resolver problemas. México: Editorial Trillas
  8. Revista Super interessante “Saveiro a risca”. Ano 12, N° 4 abril de 1998.

Downloads

Download data is not yet available.

Similar Articles

You may also start an advanced similarity search for this article.