Implementation of Artificial Intelligence in Higher Education: perceptions, experiences and teachers' opinions

Abstract
This article examines how educators are adopting and incorporating Artificial Intelligence (AI) tools into their pedagogical practices, exploring their perceptions, experiences, and opinions. Additionally, it delves into the challenges and risks associated with the implementation of AI in university teaching, as well as the preferences and training needs of educators to improve their academic practices. The research is based on a mixed-methods approach, with a descriptive-correlational scope, using surveys administered to 272 Paraguayan university professors as the data collection instrument. The aim is to better understand the concrete impact of AI on educational quality and its integration with transformative pedagogy. The findings indicate that, despite most respondents having a solid academic background, their levels of knowledge and experience in artificial intelligence can vary, which could influence their ability to incorporate and use this technology in higher education. Finally, the findings highlight the need to improve availability for students with special requirements, provide immediate feedback, and support the adaptation of the learning process. In an educational environment marked by continuous challenges demanding novel solutions, the incorporation of AI technologies, such as intelligent tutoring systems and natural language processing, presents significant improvements in multiple aspects.
Keywords
Artificial Intelligence , pedagogical practices, Educational improvement, Educational quality, Disciplinary writing, curriculum; strategy; skills; higher education, transformative pedagogy
References
- Aznar-Díaz, I., Cáceres-Reche, M. P. y Romero-Rodríguez, J. M. (2018). Indicadores de calidad para evaluar buenas prácticas docentes de mobile learning en educación Superior. EKS, 19(3), pp. 53-68. https://doi.org/10.14201/eks20181935368
- Benítez-González, M. C. (2019). Blended learning. Incidencia en el aprendizaje en Educación Superior. Asunción: Centro de Estudios Antropológicos de la Universidad Católica “Nuestra Señora de la Asunción”
- Borda, X. (2023). Desafíos y oportunidades de la Inteligencia Artificial en la Educación Superior. Fides et Ratio - Revista de Difusión cultural y científica de la Universidad La Salle en Bolivia, 26(26), 18. http://www.scielo.org.bo/scielo.php?script=sci_arttext&pid=S2071-081X2023000200002&lng=es&tlng=es
- Chassignol, M., Khoroshavin, A., Klimova, A. y Bilyatdinova, A. (2018). Artificial intelligence trends in education: A narrative overview. Procedia Computer Science, 136(5), 16-24: https://doi.org/10.1016/j.procs.2018.08.233
- Chiu, T., Xia, Q., Zhou, X., Chai, C. S., & Cheng. M. (2023). Systematic literature review on opportunities, challenges, and future research recomendations of artificial intelligence in education. Computers and Education: Artificial Intelligence, 4, 100118: https://doi.org/10.1016/j.caeai.2022.100118
- Crompton, H., & Burke, D. (2023). Artificial intelligence in higher education: the state of the field. International Journal of Educational Technology in Higher Education, 20. https://doi.org/10.1186/s41239-023-00392-8
- Kaplan, A. y Haenlein, M. (2010). Educación Superior y la Revolución Digital: Sobre los MOOC, SPOC, Redes Sociales y el Monstruo de las Galletas
- Kuleto, V., Ilić, M., Dumangiu, M., Ranković, M., Martins, O. M., Păun, D., & Mihoreanu, L. (2021). Exploring Opportunities and challenges of artificial Intelligence and Machine Learning in Higher Education Institutions. Sustainability (13): https://doi.org/10.3390/su131810424
- Luckin, R. (2018). The implications of artificial intelligence for education. London, Reino Unido: The Royal Society
- Rodríguez, M., Rubio, A., Ligán, A., Rubio, D., Bocanegra, J, y Flores. J. (2023). Inteligencia Artificial en la educación digital y los resultados de la valoración del aprendizaje. Editorial Mar Caribe: https://doi.org/https://doi.org/10.31219/osf.io/c3pmd
- Rodríguez-Hernández, C. F., Musso, M., Kyndt, E. & Cascallar. E. (2021). Artificial neural networks in academic performance prediction: Systematic implementation and predictos evaluation. Computers and Education: Artificial Intelligence, 2. https://doi.org/10.1016/j.caeai.2021.100018
- Siemens, G., & Downes, S. (2011). Connectivism: A Learning Theory for the Digital Age.
- Suazo, I. (2023). Inteligencia artificial en investigación científica. https://revistas.uautonoma.cl/index.php/scr/article/view/2149
- Zapata-Ros, M. (2018). La universidad inteligente. La transición de los LMS a los Sistemas Inteligentes de aprendizaje en educación Superior. Revista de Educación a Distancia 57(10). http://dx.doi.org/10.6018/red/57/10.