Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Sustratos y fuentes orgánicas en la producción de plántulas de Physalis peruviana L.

Seedlings of Physalis peruviana L. Photo: A.P.C. Melo

Resumen

El objetivo fue determinar el efecto de los sustratos comerciales y las fuentes orgánicas en la producción de plántulas de uchuva (Physalis peruviana L.). El diseño fue completamente aleatorizado, en un esquema factorial de 2×3, con dos sustratos comerciales la producción de plántulas (Carolina®, Bioplant®) y tres fuentes orgánicas (control, vermicompost enriquecido con termofosfato yoorin y estiércol de aves de corral). Agregar estiércol de aves de corral a sustratos comerciales causa efectos negativos sobre la precocidad y la emergencia. Carolina® es un sustrato adecuado para producir plántulas de uchuva sin necesidad de suplementos con fuentes orgánicas. Bioplant® se comporta más como un acondicionador de emergencia, que requiere suplementos con fuentes orgánicas (preferiblemente vermicompost). Las plántulas adecuadas para el trasplante se pueden obtener a los 47 días después de la siembra.

Palabras clave

Fruta exótica, Propagación de plantas, Solanaceae, Boro, Relación C/N

PDF (English)

Referencias

Almeida, M.O., M.C.M Cruz, G.D.M. Castro, and M.C.P. Fagundes. 2014. Crescimento e absorção de nutrientes por mudas de maracujazeiro-amarelo em função substrato e da adubação nitrogenada. Agraria 9(2), 180-185. Doi: 10.5039/agraria.v9i2a3593

Angulo, R. 2005. Crecimento, desarollo y producción de la uchuva en condiciones de invernadero y campo abierto. pp. 111-128. In: Fischer, G., D. Miranda, W. Piedrahita, and J. Romero (eds.). Avances en cultivo, poscosecha y exportación de la uchuva (Physalis peruviana L.) en Colombia. Universidad Nacional de Colombia, Bogota.

Benincasa, M.M.P. 2003. Análise de crescimento de plantas: noções básicas. FUNEP, Jaboticabal, Brazil.

Betemps, D.L., J.C. Fachinello, C.S.M. Lima, S.P. Galarça, A.R. Rufato. 2014. Época de semeadura, fenologia e crescimento de plantas de físalis no sul do Brasil. Rev. Bras. Frutic. 36(1), 179-185. Doi: 10.1590/0100-2945-292/13

Brugnara, E.C. 2014. Cama de aviário em substratos para mudas de maracujazeiro-amarelo. Rev. Bras. Agroecol. 9(3), 21-30.

Çakir, O., M. Pekmek, E. Çepni, B. Andar, and K. Fídan. 2014. Evaluation of biological activities of Physalis peruviana extracts and expression of Bcl-2- genes in HeLa cells. Food Sci. Technol. 34(2), 422-430. Doi: 10.1590/fst.2014.0060

Chan, K.Y., L. Van Zwieten, I. Mezaros, A. Downie, and S. Joseph. 2008. Using poultry litter biochars as soil amendments. Aust. J. Soil Res. 46(5), 437-444. Doi: 10.1071/SR08036

De Lucena, A.M.A., A. Micheline, F. Costa Xavier, H. Silva, and H.O. Guerra Carvalho. 2004. Germinação de essências florestais em substratos fertilizados com matéria orgânica. Rev. Biol. Ciênc. Terra 4(13), 27-33.

Díaz, L., G. Fischer, S. Pulido. 2010. La fibra de coco como sustituto de la turba en la obtención de plántulas de uchuva (Physalis peruviana L.). Rev. Colomb. Cienc. Hortic. 4(2), 153-162. Doi: 10.17584/rcch.2010v4i2.1236

Dickson, A., A.L. Leaf, and J.F. Hosner. 1960. Quality appraisal of white spruce and white pine seedling stock in nurseries. Forest Chron. 36(1), 10-13. Doi: 10.5558/tfc36010-1

Dutra, T.R., P.H. Grazziotti, R.C. Santana, and M.D. Massad. 2012. Desenvolvimento inicial de mudas de copaíba sob diferentes níveis de sombreamento e substratos. Rev Cienc Agron. 43(2), 321-329. Doi: 10.1590/S1806-66902012000200015

El-Beltagi, H.S., H.I. Mohamed, G. Safwat, M. Gamal, and B.M.H. Megahed. 2019. Chemical composition and biological activity of Physalis peruviana L. Gesunde Pflanzen 71, 113-122. Doi: 10.1007/s10343-019-00456-8

Ferreira, M.G.R., R.B. Rocha, E.P. Gonçalves, E.U. Alves, and G.D. Ribeiro. 2009. Influência do substrato no crescimento de mudas de cupuaçu (Theobroma grandiflorum Schum.). Acta Sci. Agron. 31(4), 677-681. Doi: 10.4025/actasciagron.v31i4.3092

Fischer, G., P.J. Almanza-Merchán, P. Miranda. 2014. Importancia y cultivo de la uchuva (Physalis peruviana L.). Rev. Bras. Frutic. 36(1), 1-15. Doi: 10.1590/0100-2945-441/13

Fischer, G. and L.M. Melgarejo. 2020. The ecophysiology of cape gooseberry (Physalis peruviana L.) - an Andean fruit crop. A review. Rev. Colomb. Cienc. Hortic. 14(1), 76-89. Doi: 10.17584/rcch.2020v14i1.10893

Guimarães, R.N., V. Damin, P.M. Fernandes, W.M. Leandro, A.P.C. Melo, and J. Rosa, 2017. Production of phosphate biofertilizer through composting and vermicomposting process. Comun. Sci. 8(3), 432-443. Doi: 10.14295/cs.v8i3.1004

Inácio, C.T. and P.R.M. Miller. 2009. Compostagem: Ciência e prática para gestão de resíduos orgânicos. Embrapa Solos, Rio de Janeiro, Brazil.

Libra, J.A., K.S. Ro, C. Kammann, A. Funke, N.D. Berge, Y. Neubauer, M.M. Titirici, C. Fuhner, O. Bens, J. Kern, and K.H. Emmerich. 2011. Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, processes and applications of wet and dry pyrolysis. Biofuels 2(1), 89-124. Doi: 10.4155/bfs.10.81

Lima, C.S.M., R. Manica-Berto, S.J.P. Silva, D.L. Betemps, and A.R. Rufato. 2009. Custos de implantação e condução de pomar de Physalis na região sul. Rev. Ceres 56(5), 555-561.

Lima, C.S.M., J. Severo, S.B. De Andrade, L.B. Affonso, C.V. Rombaldi, and A.R. Rufato. 2013. Qualidade pós-colheita de Physalis sob temperatura ambiente e refrigeração. Rev. Ceres, 60(3), 311-317. Doi: 10.1590/S0034-737X2013000300002

Liu, Y., Q. Wang, Y. Zhang, J. Cui, G. Chen, B. Xie, C. Wu, H. Liu. 2014. Synergistic and antagonistic effects of salinity and pH on germination in switchgrass (Panicum virgatum L.). Plos One 9(1), e85282. Doi: 10.1371/journal.pone.0085282

Maeda, S., R.A. Dedecek, R.B. Agostini, G.C. Andrade, and H.D. Da silva. 2007. Caracterização de substratos para produção de mudas de espécies florestais elaborados a partir de resíduos orgânicos. Pesqui. Florest. Bras. 27(54), 97-104.

Maguire, J.D. 1962. Speeds of germination-aid selection and evaluation for seedling emergence and vigor. Crop Sci. 2(1), 176-177. Doi: 10.2135/cropsci1962.0011183X000200020033x

Marchioretto, L.D., A.D. Rossi, and E.D. Conte. 2020. Chemical root pruning improves quality and nutrient uptake of cape gooseberry (Physalis peruviana) seedlings. Sci Hortic 261(2), 108948. Doi: 10.1016/j.scienta.2019.108948

McMaster, G.S. and W.W. Wilhelm. 1997. Growing degree-days: one equation, two interpretations. Agric. For. Meteorol. 87(4), 291-300. Doi: 10.1016/S0168-1923(97)00027-0

Medina, E., C. Paredes, M.A. Pérez-Murcia, and R.M. Bustamante. 2009. Spent mushroom substrates as component of growing media for germination and growth of horticultural plants. Bioresour. Technol. 100(18), 4227-4232. Doi: 10.1016/j.biortech.2009.03.055

Melo, A.P.C., C.M. Silva-Neto, A. Seleguini, and P.M. Fernandes. 2015. Does fruit cooling and seed film coating affect the germination potential of physalis? Sci. Agropecu. 6(4), 325-328.

Miranda, D. 2005. Criterios para el establecimiento, los sistemas de cultivo, el tutorado y la poda de la uchuva. pp. 29-54. In: Fischer, G., D. Miranda, W. Piedrahíta, and J. Romero (eds.). Avances en cultivo, poscosecha y exportación de la uchuva (Physalis peruviana L.) en Colombia. Universidad Nacional de Colombia, Bogota, DC.

Mokhele, B., X. Zhan, G. Yang, and X. Zhang. 2012. Nitrogen assimilation in crop plants and its affecting factors. Can. J. Plant. Sci. 92(3), 399-405. Doi: 10.4141/cjps2011-135

Morton, J.F. and O.S. Roussel. 1954. The cape gooseberry and the mexican husk tomato. Proc. Fla. State Hortic. Soc. 67, 261-266.

Muniz, J., A.A. Kretzschamar, L. Rufato, T.R. Pelizza, T. Marchi, A.E. Duarte, A.P.F. Lima, and F. Garanhani. 2011. Sistemas de condução para o cultivo de Physalis no planalto catarinense. Rev. Bras. Frutic. 33(3), 830-838. Doi: 10.1590/S0100-29452011005000083

Muniz, J., A.A. Kretzschamar, L. Rufato, T.R. Pelizza, A.R. Rufato, and T.A. Macedo. 2014. General aspects of physalis cultivation. Cienc. Rural 44(6), 964-970. Doi: 10.1590/S0103-84782014005000006

Parida, A.K. and A.B. Das. 2005. Salt tolerance and salinity effects on plants: a review. Ecotoxicol. Environ. Saf. 60(3), 324-349. Doi: 10.1016/j.ecoenv.2004.06.010

Puente, L.A., C.A. Pínto-Muñoz, E.S. Castro, and M. Cortés. 2011. Physalis peruviana Linnaeus, the multiple properties of a highly functional fruit: A review. Food Res. Int. 44(7), 1733-1740. Doi: 10.1016/j.foodres.2010.09.034

Queiróz, J.M.O., A.C.V.L. Dantas, V.O. Almeida, and J.P. Barroso. 2011. Emergência de plântulas e crescimento inicial de tamarindeiro em diferentes substratos. Magistra 23(4), 221-227.

Reyes, S.M.R., G.R. Hoyos, D.C. Ferreira Júnior, A.B. Cecílio Filho, and L.P. Moreno. 2019. Physiological response of Physalis peruviana L. seedlings inoculated with Funneliformis mosseae under drought stress. Rev. Ciênc. Agrár. 42(1), 171-180.

Rodrigues, F.A., E.S. Penoni, J.D.D. Soares, and M. Pasqual. 2012. Caracterização do ponto de colheita de Physalis peruviana L. na região de Lavras, MG. Biosci. J. 28(6), 862-867.

Rombola, A.G., G. Marisi, C. Torri, D. Fabbri, A. Buscaroli, M. Ghidotti, and A. Hornung. 2015. Relationships between chemical characteristics and phytotoxicity of biochar from poultry litter pyrolysis. J. Agric. Food Chem. 63(30), 6660-6667. Doi: 10.1021/acs.jafc.5b01540

Roveda-Hoyos, G. and L. Moreno-Fonseca. 2019. Physiological and antioxidant responses of cape gooseberry (Physalis peruviana L.) seedlings to phosphorus deficiency. Agron. Colomb. 37(1), 3-11. Doi: 10.15446/agron.colomb.v37n1.65610

Rufato, L., A.R. Rufato, C. Schlemper, C.S.M. Lima, and A.A. Kretzschmar. 2008. Aspectos técnicos da cultura da physalis. CAV/UDESC-UFPel, Lages, Brazil.

Salazar, M.R., J.W. Jones, B. Chaves, A. Cooman, and G. Fischer. 2008. Base temperature and simulation model for nodes appearance in cape gooseberry (Physalis peruviana L.). Rev. Bras. Frutic. 30(4), 862-867. Doi: 10.1590/S0100-29452008000400004

Salvador, J.O., A. Moreira, E. Malavolta, and C.P. Cabral. 2003. Influência do boro e do manganês no crescimento e na composição mineral de mudas de goiabeira. Ciênc. Agrotec. 27(2), 325-331. Doi: 10.1590/S1413-70542003000200011

Villa, F., D.F. da Silva, T.A. Peron, and E.J. Mezzalira. 2018. Initial development of Physalis seedlings in substrates and containers. Comun. Sci. 9(1), 50-57. Doi: 10.14295/cs.v9i1.1313

Vozhdayev, G.V., K.A. Spokas, J.S. Molde, S.M. Hellmann, B.M. Wood, and K.J. Valentas. 2015. Response of maize germination and growth to hydrothermal carbonization filtrate type and amount. Plant Soil 396(1), 127-136. Doi: 10.1007/s11104-015-2577-3

Xu, G., X. Fan, and A. Miller. 2012. Plant nitrogen assimilation and use efficiency. Annu. Rev. Plant Biol. 63(1), 153-182. Doi: 10.1146/annurev-arplant-042811-105532

Descargas

Los datos de descargas todavía no están disponibles.

Artículos más leídos del mismo autor/a

Artículos similares

1 2 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.