Skip to main navigation menu Skip to main content Skip to site footer

Traducción automática de un conjunto de entrenamiento para extracción semántica de relaciones

Abstract

Machine translation (MT) is used to obtain annotated corpus of English corpus which can be applicable to different natural language processing (NLP) tasks. Considering that there are more resources or data sets for training NLP models in English language, this paper explores the application of MT to automate NLP tasks in Spanish. Thus, the article describes a dataset for the extraction of generic relations (reACE) and the construction of a semantic extraction model of relations in Spanish (ER), based on the set of samples translated from English to Spanish. The results show that for the MT task it is necessary to implement a corpus preediting process in English to avoid translation and post-editing errors and maintain the original corpus annotations. The ER models in Spanish achieve measures of accuracy, completeness, and F-value comparable to those obtained by the model in the English language, which suggests that machine translation is a useful tool to perform NLP tasks in the Spanish language.

Keywords

computer linguistics, machine translation, corpus linguistics, relations extraction

XML (Español) PDF (Español)

References

  1. Ananthram, A., Allaway, E., & McKeown, K. (2020). Event Guided Denoising for Multilingual Relation Learning. arXiv preprint: arXiv:2012.02721. https://doi.org/10.18653/v1/2020.coling-main.131
  2. Anastasopoulos, A. (2019). An Analysis of Source-Side Grammatical Errors in NMT. arXiv preprint: arXiv:1905.10024.
  3. Bach, N., & Sameer, B. (2007). A Survey on Relation Extraction. Language Technologies Institute, Carnegie Mellon University 178. https://doi.org/10.1007/978-981-10-7359-5_6
  4. Bahr, R. H., Lebby, S., & Wilkinson, L. C. (2020). Spelling Error Analysis of Written Summaries in an Academic Register by Students with Specific Learning Disabilities: Phonological, Orthographic, and Morphological Influences. Reading and Writing, 33(1), 121-142. https://doi.org/10.1007/s11145-019-09977-0
  5. Belinkov, Y., & Glass, J. (2019). Analysis Methods in Neural Language Processing: A Survey. Transactions of the Association for Computational Linguistics, 7, 49-72. https://doi.org/10.1162/tacl_a_00254
  6. Carrino, C. P., Costa-Jussà, M. R., & Fonollosa, J. A. (2020). Automatic Spanish Translation of SQuAD Dataset for Multilingual Question Answering. In Proceedings of the 12th Language Resources and Evaluation Conference (5515-5523).
  7. Castillo, M. N. (2020). Corpus Básico del Español de Chile ©: metodología de procesamiento y análisis. Lexis, 44(2), 483-523. https://doi.org/10.18800/lexis.202002.004
  8. Cheng, Y. (2019). Neural Machine Translation. In Joint Training for Neural Machine Translation (1-10). Springer. https://doi.org/10.1007/978-981-32-9748-7_1
  9. Collantes, C., Mallo, J., Parra, C., Quiñones, H. & Serrano, R. (2018). Pásate al lado oscuro: ventajas de la traducción automática para el traductor profesional. La Linterna del Traductor, 17, 33-39.
  10. Gamallo, P., & García, M. (2017). LinguaKit: Uma ferramenta multilingue para a análise linguística e a extração de informação. Linguamática, 9(1), 19-28. https://doi.org/10.21814/lm.9.1.243
  11. Guan, H., Li, J., Xu, H., & Devarakonda, M. (2020). Robustly Pre-trained Neural Model for Direct Temporal Relation Extraction. arXiv preprint: arXiv:2004.06216. https://doi.org/10.1109/ICHI52183.2021.00090
  12. Gurulingappa, H., Rajput, A. M., Roberts, A., Fluck, J., Hofmann-Apitius, M., & Toldo, L. (2012). Development of a Benchmark Corpus to Support the Automatic Extraction of Drug-Related Adverse Effects from Medical Case Reports. Journal of Biomedical Informatics, 45(5), 885–892. https://doi.org/10.1016/j.jbi.2012.04.008
  13. Hachey, B., Grover, C., & Tobin, R. (2012). Datasets for Generic Relation Extraction. Natural Language Engineering, 18(1), 21–59. http://dx.doi.org/10.1017/S1351324911000106
  14. Haque, R., Hasanuzzaman, M., & Way, A. (2020). Analysing Terminology Translation Errors in Statistical and Neural Machine Translation. Machine Translation, 34(2), 149-195. https://doi.org/10.1007/s10590-02009251-z
  15. Hidalgo-Ternero, C. M. (2021). Google Translate vs. DeepL. MonTI. Monografías de Traducción e Interpretación, 154-177.
  16. Kramer, O. (2016). Scikit-learn. In Machine learning for evolution strategies. Studies in Big Data, vol 20 (pp. 45-53). Springer, Cham. https://doi.org/10.1007/978-3-319-33383-0_5
  17. Kumar, S. (2017). A Survey of Deep Learning Methods for Relation Extraction. arXiv preprint: arXiv:1705.03645.
  18. Lin, Y., Liu, Z., & Sun, M. (2017). Neural Relation Extraction with Multi-Lingual Attention. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 34–43. Association for Computational Linguistics. http://dx.doi.org/10.18653/v1/P17-1004
  19. Mesquita, F., Schmidek, J., & Barbosa, D. (2013). Effectiveness and Efficiency of Open Relation Extraction. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, 447-457. Association for Computational Linguistics.
  20. Mikelenić, B., & Tadić, M. (2020). Building the Spanish-Croatian Parallel Corpus. In Proceedings of the 12th Language Resources and Evaluation Conference, 3932-3936. European Language Resources Association
  21. Mitchell, A., Strassel, S., Huang, S., & Zakhary, R. (2005). Ace 2004 Multilingual Training Corpus. Linguistic Data Consortium, Philadelphia, 1, 1-1.
  22. Nasar, Z., Jaffry, S. W., & Malik, M. K. (2021). Named Entity Recognition and Relation Extraction: State-of-the-Art. ACM Computing Surveys (CSUR), 54(1), 1-39. https://doi.org/10.1145/3445965
  23. Ni, J., & Florian, R. (2019). Neural Cross-Lingual Relation Extraction Based on Bilingual Word Embedding Mapping. arXiv preprint: arXiv:1911.00069. https://doi.org/10.18653/v1/D19-1038
  24. Pastor, G. C. (2018). Laughing One’s Head Off in Spanish Subtitles: A Corpus-Based Study on Diatopic Variation and Its Consequences for Translation1. Fraseología, Diatopía y Traducción/Phraseology, Diatopic Variation and Translation, 17, 32. https://doi.org/10.1075/ivitra.17.03co
  25. Pawar, S., Palshikar, G. K., & Bhattacharyya, P. (2017). Relation Extraction: A Survey. arXiv preprint: arXiv:1712.05191.
  26. Popović, M. (2020). Relations Between Comprehensibility and Adequacy Errors in Machine Translation Output. In Proceedings of the 24th Conference on Computational Natural Language Learning, (pp. 256-264). Association for Computational Linguistics. https://doi.org/10.18653/v1/2020.conll-1.19
  27. Pyysalo, S., Ginter, F., Heimonen, J., Björne, J., Boberg, J., Järvinen, J., & Salakoski, T. (2007). BioInfer: A Corpus for Information Extraction in the Biomedical Domain. BMC Bioinformatics, 8(1), 50. https://doi.org/10.1186/1471-2105-8-50
  28. Rodrigues, J., & Branco, A. (2020). Argument Identification in a Language Without Labeled Data. In International Conference on Computational Processing of the Portuguese Language, (pp. 335-345). https://doi.org/10.1007/978-3-030-41505-1_32
  29. Sánchez, A. (2010). Traducción automática, corpus lingüísticos y desambiguación automática de los significados de las palabras. En R. Rabadán, M. Fernández & T. Guzmán (coords.), Lengua, traducción, recepción: en honor de Julio César Santoyo, vol. 1 (pp. 555-587). Universidad de León, Área de Publicaciones.
  30. Smirnova, A., & Cudré-Mauroux, P. (2018). Relation Extraction Using Distant Supervision: A Survey. ACM Computing Surveys (CSUR), 51(5), 1-35. https://doi.org/10.1145/3241741
  31. Torres, J. P., De Piñérez Reyes, R. G., & Bucheli, V. A. (2018). Support Vector Machines for Semantic Relation Extraction in Spanish Language. Colombian Conference on Computing, 326-337. https://doi.org/10.1007/978-3-319-98998- 3_26
  32. Verga, P., Belanger, D., Strubell, E., Roth, B., & McCallum, A. (2015). Multilingual Relation Extraction Using Compositional Universal Schema. arXiv preprint: arXiv:1511.06396. https://doi.org/10.18653/v1/N16-1103
  33. Virmani, C., Pillai, A., & Juneja, D. (2017). Extracting Information from Social Networks Using NLP. International Journal of Computational Intelligence Research, 13(4), 621-630.
  34. Walker, C., Strassel, S., Medero, J., & Maeda, K. (2006). ACE 2005 Multilingual Training Corpus. Linguistic Data Consortium. https://doi.org/10.35111/mwxc-vh88
  35. Wu, Y., Schuster, M., Chen, Z., Le, Q., Norouzi, M., Machery, W., Krikun, M. et al. (2016). Google’s Neural Machine Translation System: Bridging the Gap Between Human and Machine Translation. arXiv preprint: arXiv:1609.08144.
  36. Yamada, M. (2019). The Impact of Google Neural Machine Translation on Post-Editing by Student Translators. The Journal of Specialised Translation, 31, 87-106.
  37. Zelenko, D., Chinatsu, A., and Anthony, R. (2003, Feb.). Kernel Methods for Relation Extraction. Journal of Machine Learning Research, 3, 1083-1106. https://dl.acm.org/doi/10.3115/1118693.1118703
  38. Zhang, Q., Mengdong C., and Lianzhong, L. (2017). A Review on Entity Relation Extraction. In 2017 Second International Conference on Mechanical, Control and Computer Engineering (ICMCCE). IEEE. https://doi.org/10.1109/ICMCCE.2017.14
  39. Zhila, A., & Gelbukh, A. (2013). Comparison of Open Information Extraction for Spanish and English. Computational Linguistics and Intellectual Technologies, 12(1), 794-802.

Downloads

Download data is not yet available.

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.