Ir para o menu de navegação principal Ir para o conteúdo principal Ir para o rodapé

Alfabetização Informática na Educação: Contribuições para o Desenvolvimento do Pensamento Crítico e da Participação Social

Resumo

Nos últimos anos, observa-se uma reformulação dos programas educacionais para incluir a Ciência da Computação (IC) na educação obrigatória. A expansão dos sistemas informáticos para todas as esferas da vida humana não apenas amplia a capacidade cognitiva, mas também posiciona os saberes e práticas desse campo como elementos fundamentais na formação integral dos cidadãos. Esse desafio emerge em um contexto de profundas lacunas que promovem o desenvolvimento desigual das oportunidades de alfabetização, pensamento e participação computacional na sociedade. Este estudo analisa, com base em uma revisão sistemática, como esses conceitos têm sido abordados no ambiente escolar. Os resultados revelam que a alfabetização informática é frequentemente associada à inteligência artificial e à programação, o que pode limitar a abordagem disciplinar a essas áreas predominantes. Por outro lado, destaca-se a participação computacional em propostas com impacto social. Tais contribuições servem de base para discutir, definir e analisar os processos de alfabetização informática nas escolas, especialmente no contexto latino-americano, onde há carência de estudos sobre o tema.

Palavras-chave

alfabetização computacional, participação computacional, , pensamento computacional, educação formal, exclusão digital e computacional

PDF (Español) HTML (Español) EPUB (Español)

Referências

  1. Basogain, X., Olabe, M. Á., Olabe, J. C. & Rico, M. J. (2018). Computational thinking in pre-university blended learning classrooms. Computers in Human Behaviour, 80, 412-419. https://doi.org/10.1016/j.chb.2017.04.058
  2. Blikstein P., Moghadam S. H., Fincher S. A. & Robins, A. (2019). Computing education: Literature review and voices from the field. In S. A. Fincher, A. Robins (Eds.), The Cambridge handbook of computing education research (pp. 56-78). Cambridge University Press. https://doi.org/10.1017/9781108654555.004
  3. Brennan, K. & Resnick, M. (2012). New frameworks for studying and assessing the development of computational thinking. Proceedings of the 2012 Annual Meeting of the American Educational Research Association. Vancouver: American Educational Research Association.
  4. Bocconi, S., Chioccariello, A., Dettori, G., Ferrari, A. & Engelhardt, K. (2016). Developing computational thinking in compulsory education-Implications for policy and practice (No. JRC104188). Joint Research Centre (Seville site). https://dx.doi.org/10.2791/792158
  5. Burke, Q., O’Byrne, W. I. & Kafai, Y. B. (2016). Computational participation: Understanding coding as an extension of literacy instruction. Journal of adolescent & adult literacy, 59(4), 371-375. https://doi.org/10.1002/jaal.496
  6. Cuban, L. (2001). Oversold and underused: Computers in the classroom. Harvard University Press. https://doi.org/10.4159/9780674030107
  7. De Paula, B. H., Burn, A., Noss, R. & Valente, J. A. (2018). Playing Beowulf: Bridging computational thinking, arts and literature through game making. International Journal of Child-Computer Interaction, 16, 39-46. https://doi.org/10.1016/j.ijcci.2017.11.003
  8. Dichev, C. & Dicheva, D. (2017). Towards data science literacy. Procedia Computer Science, 108, 2151-2160. https://doi.org/10.1016/j.procs.2017.05.240
  9. DiSessa, A. (2000). Changing minds: Computers, learning, and literacy. MIT Press. https://mitpress.mit.edu/9780262541329/
  10. Echeveste, M. E. & Martínez, M. C. (2022). El rol de los capitales digitales en Escuelas Técnicas de Programación y las luchas por reducir las brechas digitales. Revista de Sociología de la EducaciónRASE, 15(2), 244-264. http://dx.doi.org/10.7203/RASE.15.2.23943
  11. Fraillon, J., Ainley, J., Schulz, W., Friedman, T. & Duckworth, D. (2020). Preparing for life in a digital world: IEA International Computer and Information Literacy Study 2018 International Report (p. 297). Springer Nature.
  12. Gough, D. (2007). Weight of Evidence: A framework for the appraisal of the quality and relevance of evidence. Research Papers in Education, 22(2), 213-228. https://doi.org/10.1080/02671520701296189
  13. Hsu, T. C., Chang, S. C. & Hung, Y. T. (2018). How to learn and how to teach computational thinking: Suggestions based on a review of the literature. Computers & Education, 126, 296-310. https://doi.org/10.1016/j.compedu.2018.07.004
  14. Holmes, W., Bialik, M. & Fadel, C. (2022). Artificial intelligence and education: A critical view through the lens of human rights, democracy and the rule of law. Council of Europe Publishing.
  15. Irgens, G. A., Vega, H., Adisa, I. & Bailey, C. (2022). Characterizing children’s conceptual knowledge and computational practices in a critical machine learning educational program. International Journal of Child-Computer Interaction, 34, 100541. https://doi.org/10.1016/j.ijcci.2022.100541
  16. Jacob, S. R. & Warschauer, M. (2018). Computational thinking and literacy. Journal of Computer Science Integration, 1(1). https://doi.org/10.26716/jcsi.2018.01.1.1
  17. Kelly, A., Finch, L., Bolles, M. & Shapiro, R. B. (2018). BlockyTalky: New programmable tools to enable students’ learning networks. International Journal of Child-Computer Interaction, 18, 8-18. https://doi.org/10.1016/j.ijcci.2018.03.004
  18. Ko, A. J., Oleson, A., Ryan, N., Register, Y., Xie, B., Tari, M., Davidson, M., Druga, S. & Loksa, D. (2020). It is time for more critical CS education. Communications of the ACM, 63(11), 31-33. https://dl.acm.org/doi/pdf/10.1145/3424000
  19. Lockridge, T., Paz, E. & Johnson, C. (2017). The Kairos Preservation Project. Computers and Composition, 46, 72-86. https://doi.org/10.1016/j.compcom.2017.09.002
  20. Losh, E. (2014). From authorship to authoring: Critical literacy, expert users, and proprietary software. Computers and Composition, 33, 40-49. https://doi.org/10.1016/j.compcom.2014.07.004
  21. Miao, F., & Holmes, W. (2021). International Forum on AI and the Futures of Education, developing competencies for the AI Era, 7-8 December 2020: synthesis report. UNESCO.
  22. Mannila, L., Leinonen, T., Bauters, M. & Veermans, M. (2023). Student and teacher co-agency when combining CT with arts and design in a cross-curricular project. Computers and Education Open, 4, 100132. https://doi.org/10.1016/j.caeo.2023.100132
  23. Monjelat, N., Peralta, N. & San Martín, P. (2021). Saberes y prácticas con TIC: ¿instrumentalismo o complejidad? Un estudio con maestros de primaria argentinos. Perfiles Educativos, 43(171), 84-101.
  24. https://doi.org/10.22201/iisue.24486167e.2021.171.59225
  25. Ng, D. T. K., Leung, J. K. L., Chu, S. K. W. & Qiao, M. S. (2021). Conceptualizing AI literacy: An exploratory review. Computers and Education: Artificial Intelligence, 2, 100041. https://doi.org/10.1016/j.caeai.2021.100041
  26. Ottenbreit-Leftwich, A. T., Kwon, K., Brush, T. A., Karlin, M., Jeon, M., Jantaraweragul, K., Guo, M., Nadir, H., Gok, F. & Bhattacharya, P. (2021). The impact of an issue-centered problem-based learning curriculum on 6th grade girls’ understanding of and interest in computer science. Computers and Education Open, 2, 100057. https://doi.org/10.1016/j.caeo.2021.100057
  27. Ouzzani, M., Hammady, H., Fedorowicz, Z. & Elmagarmid, A. (2016). Rayyan — a web and mobile app for systematic reviews. Systematic Reviews, 5. 10.1186/s13643-016-0384-4
  28. Papavlasopoulou, S., Giannakos, M. N. & Jaccheri, L. (2019). Exploring children’s learning experience in constructionism-based coding activities through design-based research. Computers in Human Behaviour, 99, 415-427. https://doi.org/10.1016/j.chb.2019.01.008
  29. Sáez-López, J. M., Román-González, M. & Vázquez-Cano, E. (2016). Visual programming languages integrated across the curriculum in elementary school: A two-year case study using “Scratch” in five schools. Computers & Education, 97, 129-141. https://doi.org/10.1016/j.compedu.2016.03.003
  30. Scasso, M., Cura, D., Marino, V. & Kaplan, L. (2019). Especializaciones en didáctica de las Ciencias de la Computación. Evaluación de procesos y resultados. Informe Final. Program.AR y Fundación Quántitas. https://fundacionsadosky.org.ar/wp-content/uploads/2023/03/Informe-final-Evaluacion-especializaciones.pdf
  31. Steinbauer, G., Kandlhofer, M., Chklovski, T., Heintz, F. & Koenig, S. (2021). A differentiated discussion about AI education K-12. KI-Künstliche Intelligenz, 35(2), 131-137. https://link.springer.com/article/10.1007/s13218-021-00724-8
  32. Su, J. & Zhong, Y. (2022). Artificial Intelligence (AI) in early childhood education: Curriculum design and future directions. Computers and Education: Artificial Intelligence, 3, 100072. https://doi.org/10.1016/j.caeai.2022.10002
  33. Simari, G. R. (2013). Los fundamentos computacionales como parte de las ciencias básicas en las terminales de la disciplina Informática. En VIII Congreso de Tecnología en Educación y Educación en Tecnología. http://sedici.unlp.edu.ar/handle/10915/27579
  34. Terigi, F. (2020). Escolarización y pandemia: alteraciones, continuidades, desigualdades. REVCOM, 11. https://doi.org/10.24215/24517836e039
  35. Terroba, M., Ribera, J. M., Lapresa, D. & Anguera, M. T. (2021). Propuesta de intervención mediante un robot de suelo con mandos de direccionalidad programada: análisis observacional del desarrollo del pensamiento computacional en educación infantil. Revista de psicodidáctica, 26(2), 143-151. https://doi.org/10.1016/j.psicod.2021.03.001
  36. Torres, M., Sandrone, D. & Lawler, D. (2022). Índice EME: uma ferramenta para a avaliação do design de hardware e software na educação infantil. Revista Intersaberes, 17(42), 820-839. https://www.revistasuninter.com/intersaberes/index.php/revista/article/view/2371
  37. Turner, R. (2018). Computational Artifacts. Towards a Philosophy of Computer Science. Springer. University of Essex. https://link.springer.com/book/10.1007/978-3-662-55565-1
  38. Vourletsis, I. y Politis, P. (2022). Exploring the effect of remixing stories and games on the development of students’ computational thinking. Computers & Education Open, 3, 100069. https://doi.org/10.1016/j.caeo.2021.100069
  39. Weintrop, D. & Wilensky, U. (2019). Transitioning from introductory block-based and text-based environments to professional programming languages in high school computer science classrooms. Computers & Education, 142, 103646. https://doi.org/10.1016/j.compedu.2019.103646
  40. Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33-35. https://doi.org/10.1145/1118178.1118215
  41. Yadav, A., Burkhart, D., Moix, D., Snow, E., Bandaru, P. & Clayborn, L. (2015). Sowing the seeds: A landscape study on assessment in secondary computer science education. Computer Science Teachers Association, NY.

Downloads

Não há dados estatísticos.

Artigos Semelhantes

<< < 6 7 8 9 10 11 12 > >> 

Você também pode iniciar uma pesquisa avançada por similaridade para este artigo.