Skip to main navigation menu Skip to main content Skip to site footer

Curriculum in natural sciences in Latin America: analysis of research production

Abstract

This article presents the results of a research project aimed at analyzing the academic discourses on curriculum in Latin American publications in Web of Science. For this purpose, the methodological route is based on bibliometrics and content analysis from the search, systematization, and analysis of the articles gathered in the documentary corpus. The consolidation of research networks between Latin American and foreign authors is evidenced. However, national work teams prevail, which show the low discussion of perspectives. On the other hand, thematic niches are found in which the research projects are grouped. These niches are: (1) conceptions of science, (2) didactics and teaching, (3) teacher training, (4) interculturality, and (5) scientific research. It is concluded that research in curriculum in natural sciences is a diverse field that unites not only different perspectives of science but also different perspectives of curriculum, since it is associated both to a practical space in the teaching of science and to a theoretical space that involves epistemological perspectives of science and structure of contents.

Keywords

curriculum, natural sciences, teaching

XML PDF HTML EPUB

References

  1. Acosta, D. (2016). Curriculum design from a cultural perspective of the Zenu community in the area of natural sciences and environmental education. Revista Científica, 4(27), 318-327. https://doi.org/10.14483/udistrital.jour.RC.2016.27.a2 DOI: https://doi.org/10.14483/udistrital.jour.RC.2016.27.a2
  2. Adúriz-Bravo, A., Duschl, R., & Izquierdo M. (2003). Science curriculum development as a technology based on didactical knowledge. Journal of Science Education, 4(2), 64-69.
  3. Andueza, A. (2016). Writing as a tool for meaningful learning: A quasi-experiment in science class. Revista Complutense de Educación, 27(2), 653-668. https://doi.org/10.5209/rev_RCED.2016.v27.n2.46918 DOI: https://doi.org/10.5209/rev_RCED.2016.v27.n2.46918
  4. Apa-Terrero, Y., Olive-Iglesias, M., & Lemus-Reyes, F. (2019). Curricular strategy «English communicative competence» to favor the comprehension of scientific texts in inorganic chemistry. Luz, 18(4), 14-22.
  5. Archila, P., & Truscott, A. (2020). Bilingual teaching practices in university science courses: How do biology and microbiology students perceive them? Journal of Language Identity and Education, 19(3), 163-178. https://doi.org/10.1080/15348458.2019.1654868 DOI: https://doi.org/10.1080/15348458.2019.1654868
  6. Aria, M., & Cuccurullo, C. (2017). bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959-975. https://doi.org/10.1016/j.joi.2017.08.007 DOI: https://doi.org/10.1016/j.joi.2017.08.007
  7. Ausubel, D. (1978). Psicología educativa. Un punto de vista cognoscitivo. Trillas.
  8. Author, (2014).
  9. Avendaño, A., & Álvarez, M. (2019). The natural sciences, a space to treat the interculturality in the regular classroom. Revista Conrado, 15(68), 222-229.
  10. Batista-Freyre, Y., Proenza-Garrido, Y., & Hidalgo-Herrera, R. (2016). Systemic structuration for the experiential problem solving in the area of natural sciences. Luz, 15(4), 33-44.
  11. Bedin, E., & Pino del, J. (2018). Study Situation as an artifact for a methodological qualification in the initial formation of chemistry teachers: A specific case of Circles of Conversations. Educar em Revista, 34(69), 293-309. https://doi.org/10.1590/0104-4060.53297 DOI: https://doi.org/10.1590/0104-4060.53297
  12. Blanchar-Anez, J. (2020). Characteristics of pedagogical practice in the chemical area. Revista Científica, 1(37), 30-57. https://doi.org/10.14483/23448350.14855 DOI: https://doi.org/10.14483/23448350.14855
  13. Candela, B. (2020). Orality, reading and writing mediator competences of the learning of the chemistry curriculum: The case of the chemical equilibrium. Revista Científica, 1(37), 18-29. https://doi.org/10.14483/23448350.14839 DOI: https://doi.org/10.14483/23448350.14839
  14. Eck van, N. (2011). Methodological Advances in Bibliometric Mapping of Science. Research Institute of Management. http://hdl.handle.net/1765/26509
  15. Eck van, N., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523-538. https://doi.org/10.1007/s11192-009-0146-3 DOI: https://doi.org/10.1007/s11192-009-0146-3
  16. Ferreira, M., Santos dos, A., & Terreri, L. (2016). Biological sciences teacher training curriculum: for a discursive approach to investigate the relation between theory and practice. ETD - Educação Temática Digital, 18(2), 495-510. https://doi.org/10.20396/etd.v18i2.8644089 DOI: https://doi.org/10.20396/etd.v18i2.8644089
  17. Feyerabend. (1981). On the interpretation of scientific theories. Cambridge University Press. DOI: https://doi.org/10.1017/CBO9781139171526.004
  18. Gallego Torres, A. P. (2007). Science, history, science philosophy and sience education: the specialist communit Tecné, Episteme y Didaxis: TED, (22). DOI: https://doi.org/10.17227/ted.num22-384 DOI: https://doi.org/10.17227/ted.num22-384
  19. Garcês, B., Santos, K., & Oliveira de, C. (2018). Project-based learning in the teaching of metabolic biochemistry. Revista Ibero-Americana de Estudos em Educação, 13(special), 526-533. https://doi.org/10.21723/riaee.nesp1.v13.2018.11448 DOI: https://doi.org/10.21723/riaee.nesp1.v13.2018.11448
  20. Goes, L. F., Fernandez, C., & Eilks, I. (2020). The Development of Pedagogical Content Knowledge about Teaching Redox Reactions in German Chemistry Teacher Education. Education Sciences, 10(7), 170. https://doi.org/10.3390/educsci10070170 DOI: https://doi.org/10.3390/educsci10070170
  21. González, G., & Martínez, L. (2019). The natural sciences from the perspective of science, technology, society and environment: a respective proposal for the learning of chemistry. Revista Conrado, 15(67), 205-212.
  22. Hurst, G., Slootweg, J., Balu, A., Climent-Bellido, M., Gomera, A., Gómez, P., Luque, R., Mammino, L., Spanevello, R., Saito, K., & Ibanez, J. (2019). International Perspectives on Green and Sustainable Chemistry Education via Systems Thinking. Journal of Chemical Education, 12(96), 2794-2804. https://doi.org/10.1021/acs.jchemed.9b00341 DOI: https://doi.org/10.1021/acs.jchemed.9b00341
  23. Kuhn, T. S (2019). La estructura de las revoluciones científicas. Fondo de Cultura Económica.
  24. Lakatos, I., Worrall, J., & Currie, G. (1983). La metodología de los programas de investigación científica (No. 001.42 L35). Madrid: Alianza Editorial.
  25. Luca de, B., Nudel, C., González, R., & Nusblat, A. (2017). Introducing the concept of biocatalysis in the classroom: the conversion of cholesterol to provitamin D3. Biochemistry and Molecular Biology Education, 45(2), 105-114. https://doi.org/10.1002/bmb.20995 DOI: https://doi.org/10.1002/bmb.20995
  26. Luvison, L. (2020). The centrality of evolution in biology teaching: Towards a pluralistic perspective. Journal of Biological Education, 56(1), 109-120. https://doi.org/10.1080/00219266.2020.1757486 DOI: https://doi.org/10.1080/00219266.2020.1757486
  27. Matthews, M. (1991). Un lugar para la historia de la filosofía en la enseñanza de las ciencias. Comunicación, Lenguaje y Educación, (11-12), 141-156 https://DOI: 10.1080/02147033.1991.10820987 DOI: https://doi.org/10.1080/02147033.1991.10820987
  28. Melo, L., Canada, F., Mellado, V., & Buitrago, A. (2016). Pedagogical content knowledge development in the case of the electric charge teaching in high school from classroom practice. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 13(2), 459-475. https://doi.org/10.25267/Rev_Eureka_ensen_divulg_cienc.2016.v13.i2.16 DOI: https://doi.org/10.25267/Rev_Eureka_ensen_divulg_cienc.2016.v13.i2.16
  29. Novak, J. D. (1988). Constructivismo humano: un consenso emergente. Enseñanza de las ciencias: revista de investigación y experiencias didácticas, 213-223. DOI: https://doi.org/10.5565/rev/ensciencias.5097
  30. Parra, A., Ordenes, J., & Fuente de la, M. (2018). Learning abstract physical concepts from experience: Design and use of an RC circuit. The Physics Teacher, 56(5), 310-312. https://doi.org/10.1119/1.5033878 DOI: https://doi.org/10.1119/1.5033878
  31. Pérez, F., & Carballosa, A. (2018). Natural sciences complex problem solving in basic education. Revista Conrado, 14(64), 133-138.
  32. Pérez, D. G., Alís, J. C., & Terrades, F. M. (1999). El surgimiento de la didáctica de las ciencias como campo específico de conocimientos. Revista educación y pedagogía, 11(25), 13-65.
  33. Piaget, J. (1970). Genetic epistemology. Columbia University Press. DOI: https://doi.org/10.7312/piag91272
  34. Pino, M., & Filenko, M. (2017). The curricular design of the optional course: The teaching of the resolution of the physical-educational problems. Atenas, 3(39), 80-95.
  35. Porlán, R., & Rivero, A. (1998). El conocimiento de los profesores: una propuesta formativa en el área de ciências (No. Sirsi) i9788487118753).
  36. Pozo, J., Pérez, M., Domínguez, J., Gómez, M., & Postigo Y. (1994). Solución de problemas. Madrid Santillana.
  37. Rodrigues, M., Moraes de, M., & Pereira, N. (2020). Rural Education and Chemistry teaching: Experiments in schools of the countryside in the Mato Grosso state. Revista Brasileira de Educação do Campo, 5, e6863. https://doi.org/10.20873/uft.rbec.e6863 DOI: https://doi.org/10.20873/uft.rbec.e6863
  38. Rodrigues, P. (2018). Training science teachers to an inclusive pedagogical practice. Revista Ibero-Americana de Estudos em Educação, 13(special), 1449-1458. https://doi.org/10.21723/riaee.v13.nesp2.set2018.11654 DOI: https://doi.org/10.21723/riaee.v13.nesp2.set2018.11654
  39. Serrato, D. (2020). Training of biology teachers: A look at the National Pedagogic University. Praxis & Saber, 11(27), e10816. https://doi.org/10.19053/22160159.v11.n27.2020.10816 DOI: https://doi.org/10.19053/22160159.v11.n27.2020.10816
  40. Silva, H. M., & Mortimer, E. F. (2020). Teachers’ Conceptions about the Origin of Humans in the Context of Three Latin American Countries with Different Forms and Degrees of Secularism. Science & Education, 29(3), 691-711. https://doi.org/10.1007/s11191-020-00124-8 DOI: https://doi.org/10.1007/s11191-020-00124-8
  41. Silva, T., & Galembeck, E. (2017). Developing and Supporting Students’ Autonomy To Plan, Perform, and Interpret Inquiry-Based Biochemistry Experiments. Journal of Chemical Education, 94(1), 52-60. https://doi.org/10.1021/acs.jchemed.6b00326 DOI: https://doi.org/10.1021/acs.jchemed.6b00326
  42. Soares, Z., Monteiro, S., Fraga, L., & Rebello, S. (2018). The use of a multimidia game about sida among students: contributions to teaching science. Cadernos de Educação, Tecnologia e Sociedade, 11(2), 323-333. https://doi.org/10.14571/brajets.v11.n2.323-333 DOI: https://doi.org/10.14571/brajets.v11.n2.323-333
  43. Tavares, G. M., & Bobrowski, V. L. (2018). Integrative assessment of Evolutionary theory acceptance and knowledge levels of Biology undergraduate students from a Brazilian university. International Journal of Science Education, 40(4), 442-458. https://doi.org/10.1080/09500693.2018.1429031 DOI: https://doi.org/10.1080/09500693.2018.1429031
  44. Taverna, M., Polo, M., Zocola, M., & Bertero, M. (2019). Inclusion of children and adolescents with mild disabilities in the scientific area through a novel workshop as a didactic strategy. International Journal of Special Education, 33(4), 925-937.
  45. Toulmin, D. (1972). Human Understanding. Princeton University Press
  46. Urbizagástegui, R. (1996). Una revisión crítica de la Ley de Bradford. Investigación Bibliotecológica, 10, 16-26. DOI: https://doi.org/10.22201/iibi.0187358xp.1996.20.3835
  47. Vera, M., Lucero, I., Stoppello, M., & Petris, R. (2019). General Chemistry content learning using videos in Engineering careers. Innoeduca Revista, 5(2), 151-158. https://doi.org/10.24310/innoeduca.2019.v5i2.3566 DOI: https://doi.org/10.24310/innoeduca.2019.v5i2.3566

Downloads

Download data is not yet available.

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.