Currículum en Ciencias Naturales en Latinoamérica. Análisis de la producción investigativa
Resumen
El articulo presenta los resultados de la investigación que tuvo como objetivo el análisis de los discursos académicos sobre el currículo, que transitan en las publicaciones de latinoamericanas en Web of Science; para tal fin se traza la ruta metodológica apoyada en la bibliometría y el análisis del contenido, a partir de la búsqueda, sistematización y análisis de los artículos consolidados en el corpus documental se evidencia la consolidación de redes investigativas entre investigadores latinoamericanos y autores extranjeros, sin embargo, prevalecen los equipos de trabajo nacionales que muestran la baja discusión de perspectivas, de otro lado, se encuentran nichos temáticos en los cuales se agrupan las investigaciones realizadas, estos nichos son: Concepciones de la Ciencia. 2) Didáctica y enseñanza 3) Formación de profesores, 4) Interculturalidad, 5) Investigación Científica. Se concluye que la investigación en Currículo en Ciencias Naturales es un campo diverso que une no solo diferentes perspectivas de la ciencia sino diferentes perspectivas del currículo, puesto que es asociado tanto un espacio práctico, en la enseñanza de la ciencia, como a un espacio teórico que involucra perspectivas epistemológicas de la ciencia y estructura de contenidos.
Palabras clave
currículo, ciencias naturales, enseñanza
Citas
- Acosta, D. (2016). Curriculum design from a cultural perspective of the Zenu community in the area of natural sciences and environmental education. Revista Científica, 4(27), 318-327. https://doi.org/10.14483/udistrital.jour.RC.2016.27.a2 DOI: https://doi.org/10.14483/udistrital.jour.RC.2016.27.a2
- Adúriz-Bravo, A., Duschl, R., & Izquierdo M. (2003). Science curriculum development as a technology based on didactical knowledge. Journal of Science Education, 4(2), 64-69.
- Andueza, A. (2016). Writing as a tool for meaningful learning: A quasi-experiment in science class. Revista Complutense de Educación, 27(2), 653-668. https://doi.org/10.5209/rev_RCED.2016.v27.n2.46918 DOI: https://doi.org/10.5209/rev_RCED.2016.v27.n2.46918
- Apa-Terrero, Y., Olive-Iglesias, M., & Lemus-Reyes, F. (2019). Curricular strategy «English communicative competence» to favor the comprehension of scientific texts in inorganic chemistry. Luz, 18(4), 14-22.
- Archila, P., & Truscott, A. (2020). Bilingual teaching practices in university science courses: How do biology and microbiology students perceive them? Journal of Language Identity and Education, 19(3), 163-178. https://doi.org/10.1080/15348458.2019.1654868 DOI: https://doi.org/10.1080/15348458.2019.1654868
- Aria, M., & Cuccurullo, C. (2017). bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959-975. https://doi.org/10.1016/j.joi.2017.08.007 DOI: https://doi.org/10.1016/j.joi.2017.08.007
- Ausubel, D. (1978). Psicología educativa. Un punto de vista cognoscitivo. Trillas.
- Author, (2014).
- Avendaño, A., & Álvarez, M. (2019). The natural sciences, a space to treat the interculturality in the regular classroom. Revista Conrado, 15(68), 222-229.
- Batista-Freyre, Y., Proenza-Garrido, Y., & Hidalgo-Herrera, R. (2016). Systemic structuration for the experiential problem solving in the area of natural sciences. Luz, 15(4), 33-44.
- Bedin, E., & Pino del, J. (2018). Study Situation as an artifact for a methodological qualification in the initial formation of chemistry teachers: A specific case of Circles of Conversations. Educar em Revista, 34(69), 293-309. https://doi.org/10.1590/0104-4060.53297 DOI: https://doi.org/10.1590/0104-4060.53297
- Blanchar-Anez, J. (2020). Characteristics of pedagogical practice in the chemical area. Revista Científica, 1(37), 30-57. https://doi.org/10.14483/23448350.14855 DOI: https://doi.org/10.14483/23448350.14855
- Candela, B. (2020). Orality, reading and writing mediator competences of the learning of the chemistry curriculum: The case of the chemical equilibrium. Revista Científica, 1(37), 18-29. https://doi.org/10.14483/23448350.14839 DOI: https://doi.org/10.14483/23448350.14839
- Eck van, N. (2011). Methodological Advances in Bibliometric Mapping of Science. Research Institute of Management. http://hdl.handle.net/1765/26509
- Eck van, N., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523-538. https://doi.org/10.1007/s11192-009-0146-3 DOI: https://doi.org/10.1007/s11192-009-0146-3
- Ferreira, M., Santos dos, A., & Terreri, L. (2016). Biological sciences teacher training curriculum: for a discursive approach to investigate the relation between theory and practice. ETD - Educação Temática Digital, 18(2), 495-510. https://doi.org/10.20396/etd.v18i2.8644089 DOI: https://doi.org/10.20396/etd.v18i2.8644089
- Feyerabend. (1981). On the interpretation of scientific theories. Cambridge University Press. DOI: https://doi.org/10.1017/CBO9781139171526.004
- Gallego Torres, A. P. (2007). Science, history, science philosophy and sience education: the specialist communit Tecné, Episteme y Didaxis: TED, (22). DOI: https://doi.org/10.17227/ted.num22-384 DOI: https://doi.org/10.17227/ted.num22-384
- Garcês, B., Santos, K., & Oliveira de, C. (2018). Project-based learning in the teaching of metabolic biochemistry. Revista Ibero-Americana de Estudos em Educação, 13(special), 526-533. https://doi.org/10.21723/riaee.nesp1.v13.2018.11448 DOI: https://doi.org/10.21723/riaee.nesp1.v13.2018.11448
- Goes, L. F., Fernandez, C., & Eilks, I. (2020). The Development of Pedagogical Content Knowledge about Teaching Redox Reactions in German Chemistry Teacher Education. Education Sciences, 10(7), 170. https://doi.org/10.3390/educsci10070170 DOI: https://doi.org/10.3390/educsci10070170
- González, G., & Martínez, L. (2019). The natural sciences from the perspective of science, technology, society and environment: a respective proposal for the learning of chemistry. Revista Conrado, 15(67), 205-212.
- Hurst, G., Slootweg, J., Balu, A., Climent-Bellido, M., Gomera, A., Gómez, P., Luque, R., Mammino, L., Spanevello, R., Saito, K., & Ibanez, J. (2019). International Perspectives on Green and Sustainable Chemistry Education via Systems Thinking. Journal of Chemical Education, 12(96), 2794-2804. https://doi.org/10.1021/acs.jchemed.9b00341 DOI: https://doi.org/10.1021/acs.jchemed.9b00341
- Kuhn, T. S (2019). La estructura de las revoluciones científicas. Fondo de Cultura Económica.
- Lakatos, I., Worrall, J., & Currie, G. (1983). La metodología de los programas de investigación científica (No. 001.42 L35). Madrid: Alianza Editorial.
- Luca de, B., Nudel, C., González, R., & Nusblat, A. (2017). Introducing the concept of biocatalysis in the classroom: the conversion of cholesterol to provitamin D3. Biochemistry and Molecular Biology Education, 45(2), 105-114. https://doi.org/10.1002/bmb.20995 DOI: https://doi.org/10.1002/bmb.20995
- Luvison, L. (2020). The centrality of evolution in biology teaching: Towards a pluralistic perspective. Journal of Biological Education, 56(1), 109-120. https://doi.org/10.1080/00219266.2020.1757486 DOI: https://doi.org/10.1080/00219266.2020.1757486
- Matthews, M. (1991). Un lugar para la historia de la filosofía en la enseñanza de las ciencias. Comunicación, Lenguaje y Educación, (11-12), 141-156 https://DOI: 10.1080/02147033.1991.10820987 DOI: https://doi.org/10.1080/02147033.1991.10820987
- Melo, L., Canada, F., Mellado, V., & Buitrago, A. (2016). Pedagogical content knowledge development in the case of the electric charge teaching in high school from classroom practice. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 13(2), 459-475. https://doi.org/10.25267/Rev_Eureka_ensen_divulg_cienc.2016.v13.i2.16 DOI: https://doi.org/10.25267/Rev_Eureka_ensen_divulg_cienc.2016.v13.i2.16
- Novak, J. D. (1988). Constructivismo humano: un consenso emergente. Enseñanza de las ciencias: revista de investigación y experiencias didácticas, 213-223. DOI: https://doi.org/10.5565/rev/ensciencias.5097
- Parra, A., Ordenes, J., & Fuente de la, M. (2018). Learning abstract physical concepts from experience: Design and use of an RC circuit. The Physics Teacher, 56(5), 310-312. https://doi.org/10.1119/1.5033878 DOI: https://doi.org/10.1119/1.5033878
- Pérez, F., & Carballosa, A. (2018). Natural sciences complex problem solving in basic education. Revista Conrado, 14(64), 133-138.
- Pérez, D. G., Alís, J. C., & Terrades, F. M. (1999). El surgimiento de la didáctica de las ciencias como campo específico de conocimientos. Revista educación y pedagogía, 11(25), 13-65.
- Piaget, J. (1970). Genetic epistemology. Columbia University Press. DOI: https://doi.org/10.7312/piag91272
- Pino, M., & Filenko, M. (2017). The curricular design of the optional course: The teaching of the resolution of the physical-educational problems. Atenas, 3(39), 80-95.
- Porlán, R., & Rivero, A. (1998). El conocimiento de los profesores: una propuesta formativa en el área de ciências (No. Sirsi) i9788487118753).
- Pozo, J., Pérez, M., Domínguez, J., Gómez, M., & Postigo Y. (1994). Solución de problemas. Madrid Santillana.
- Rodrigues, M., Moraes de, M., & Pereira, N. (2020). Rural Education and Chemistry teaching: Experiments in schools of the countryside in the Mato Grosso state. Revista Brasileira de Educação do Campo, 5, e6863. https://doi.org/10.20873/uft.rbec.e6863 DOI: https://doi.org/10.20873/uft.rbec.e6863
- Rodrigues, P. (2018). Training science teachers to an inclusive pedagogical practice. Revista Ibero-Americana de Estudos em Educação, 13(special), 1449-1458. https://doi.org/10.21723/riaee.v13.nesp2.set2018.11654 DOI: https://doi.org/10.21723/riaee.v13.nesp2.set2018.11654
- Serrato, D. (2020). Training of biology teachers: A look at the National Pedagogic University. Praxis & Saber, 11(27), e10816. https://doi.org/10.19053/22160159.v11.n27.2020.10816 DOI: https://doi.org/10.19053/22160159.v11.n27.2020.10816
- Silva, H. M., & Mortimer, E. F. (2020). Teachers’ Conceptions about the Origin of Humans in the Context of Three Latin American Countries with Different Forms and Degrees of Secularism. Science & Education, 29(3), 691-711. https://doi.org/10.1007/s11191-020-00124-8 DOI: https://doi.org/10.1007/s11191-020-00124-8
- Silva, T., & Galembeck, E. (2017). Developing and Supporting Students’ Autonomy To Plan, Perform, and Interpret Inquiry-Based Biochemistry Experiments. Journal of Chemical Education, 94(1), 52-60. https://doi.org/10.1021/acs.jchemed.6b00326 DOI: https://doi.org/10.1021/acs.jchemed.6b00326
- Soares, Z., Monteiro, S., Fraga, L., & Rebello, S. (2018). The use of a multimidia game about sida among students: contributions to teaching science. Cadernos de Educação, Tecnologia e Sociedade, 11(2), 323-333. https://doi.org/10.14571/brajets.v11.n2.323-333 DOI: https://doi.org/10.14571/brajets.v11.n2.323-333
- Tavares, G. M., & Bobrowski, V. L. (2018). Integrative assessment of Evolutionary theory acceptance and knowledge levels of Biology undergraduate students from a Brazilian university. International Journal of Science Education, 40(4), 442-458. https://doi.org/10.1080/09500693.2018.1429031 DOI: https://doi.org/10.1080/09500693.2018.1429031
- Taverna, M., Polo, M., Zocola, M., & Bertero, M. (2019). Inclusion of children and adolescents with mild disabilities in the scientific area through a novel workshop as a didactic strategy. International Journal of Special Education, 33(4), 925-937.
- Toulmin, D. (1972). Human Understanding. Princeton University Press
- Urbizagástegui, R. (1996). Una revisión crítica de la Ley de Bradford. Investigación Bibliotecológica, 10, 16-26. DOI: https://doi.org/10.22201/iibi.0187358xp.1996.20.3835
- Vera, M., Lucero, I., Stoppello, M., & Petris, R. (2019). General Chemistry content learning using videos in Engineering careers. Innoeduca Revista, 5(2), 151-158. https://doi.org/10.24310/innoeduca.2019.v5i2.3566 DOI: https://doi.org/10.24310/innoeduca.2019.v5i2.3566