Noción de aproximación del área bajo la curva utilizando la aplicación Calculadora Gráfica de GeoGebra
Resumen
Este artículo presenta los resultados de un proyecto de investigación desarrollado en la Facultad de Ingeniería y Ciencias Básicas de la Fundación Universitaria Los Libertadores (Bogotá, D.C.) cuyo objetivo consistió en describir y analizar los efectos de implementar una estrategia didáctica para la enseñanza de la noción de área bajo la curva, durante un curso de Cálculo Integral, a partir de la integración de teléfonos celulares como dispositivos que pueden apoyar el proceso de aprendizaje y no como artefactos nocivos o distractores y que responden a nuevas formas de reconocerse e integrarse a comunidades alternativas de aprendizaje. Se realizó un diseño experimental de cuatro grupos de Solomon con el propósito de determinar la influencia de una intervención mediada por la aplicación móvil “Calculadora Gráfica” de GeoGebra considerando también el efecto de una prueba de entrada. Los resultados encontrados señalan que los dos grupos que tuvieron la intervención mediada por la aplicación móvil obtuvieron mejor rendimiento en la prueba de salida que aquellos grupos que tuvieron una intervención con calculadora científica tradicional.
Palabras clave
Aprendizaje móvil, aproximación de áreas, enseñanza del cálculo, software de geometría dinámica
Referencias
Abramovich, S. (2013). Computers in mathematics education: An introduction. Computers in the Schools, 30(1–2), 4–11. https://doi.org/10.1080/07380569.2013.765305
Arbain, N., & Shukor, N. A. (2015). The effects of GeoGebra on students achievement. Procedia-Social and Behavioral Sciences, 172, 208–214. https://doi.org/10.1016/j.sbspro.2015.01.356
Braver, M. W., & Braver, S. L. (1988). Statistical treatment of the Solomon four-group design: A meta-analytic approach. Psychological Bulletin, 104(1), 150. https://doi.org/10.1037/0033-2909.104.1.150
Bray, A., & Tangney, B. (2017). Technology usage in mathematics education research–A systematic review of recent trends. Computers & Education, 114, 255–273. https://doi.org/10.1016/j.compedu.2017.07.004
Caglayan, G. (2016). Teaching ideas and activities for classroom: integrating technology into the pedagogy of integral calculus and the approximation of definite integrals. International Journal of Mathematical Education in Science and Technology, 47(8), 1261–1279. https://doi.org/10.1080/0020739X.2016.1176261
Dagdilelis, V. (2018). Preparing teachers for the use of digital technologies in their teaching practice. Research in Social Sciences and Technology, 3(1), 109–121. Retrieved from https://www.learntechlib.org/p/187543/
Diković, L. (2009). Applications GeoGebra into teaching some topics of mathematics at the college level. Computer Science and Information Systems, 6(2), 191–203. https://doi.org/10.2298/CSIS0902191D
Fahlberg-Stojanovska, L., & Stojanovski, V. (2009). GeoGebra—freedom to explore and learn. Teaching Mathematics and Its Applications: An International Journal of the IMA, 28(2), 69–76. https://doi.org/10.1093/teamat/hrp003
Georgiev, T., Georgieva, E., & Smrikarov, A. (2004). M-learning-a New Stage of Е-Learning. International Conference on Computer Systems and Technologies-CompSysTech, 4(28), 1–4. https://doi.org/10.1145/1050330.1050437
Hohenwarter, J., Hohenwarter, M., & Lavicza, Z. (2009). Introducing dynamic mathematics software to secondary school teachers: The case of GeoGebra. Journal of Computers in Mathematics and Science Teaching, 28(2), 135–146. Retrieved from https://www.learntechlib.org/primary/p/30304/.
Hohenwarter, M., & Fuchs, K. (2004). Combination of dynamic geometry, algebra and calculus in the software system GeoGebra. Computer Algebra Systems and Dynamic Geometry Systems in Mathematics Teaching Conference. Retrieved from https://www.researchgate.net/publication/228398347
Hwang, G., & Tsai, C. (2011). Research trends in mobile and ubiquitous learning: A review of publications in selected journals from 2001 to 2010. British Journal of Educational Technology, 42(4), E65–E70. https://doi.org/10.1111/j.1467-8535.2011.01183.x
Inayat, M. F., & Hamid, S. N. (2016). Integrating New Technologies And Tools In Teaching And Learning Of Mathematics: An Overview. Journal of Computer and Mathematical Sciences, 7(3), 122–129. Retrieved from http://compmath-journal.org/dnload/Momin-Fasiyoddin-Inayat-and-Shaikh-Naeem-Hamid-/CMJV07I03P0122.pdf
Kozma, R. B. (2003). Technology and classroom practices: An international study. Journal of Research on Technology in Education, 36(1), 1–14. https://doi.org/10.1080/15391523.2003.10782399
Little, C. (2009). Differentiation in three easy, GeoGebra-style, lessons. MSOR Connections, 9(2), 27–30. Retrieved from https://www.heacademy.ac.uk/system/files/msor.9.2h.pdf
Maclaren, P. (2014). The new chalkboard: the role of digital pen technologies in tertiary mathematics teaching. Teaching Mathematics and Its Applications: International Journal of the IMA, 33(1), 16–26. https://doi.org/10.1093/teamat/hru001
Mehanovic, S., & Spikol, D. (2012). Investigating how to design interactive learning environments to support students’ learning of upper secondary and university math. Proceedings of the 20th International Conference on Computers in Education ICCE2012; Retrieved from http://muep.mau.se/handle/2043/15777
Ozdamli, F., & Uzunboylu, H. (2015). M‐learning adequacy and perceptions of students and teachers in secondary schools. British Journal of Educational Technology, 46(1), 159–172. https://doi.org/10.1111/bjet.12136
Peng, H., Su, Y., Chou, C., & Tsai, C. (2009). Ubiquitous knowledge construction: Mobile learning re‐defined and a conceptual framework. Innovations in Education and Teaching International, 46(2), 171–183. https://doi.org/10.1080/14703290902843828
Pimmer, C., Mateescu, M., & Gröhbiel, U. (2016). Mobile and ubiquitous learning in higher education settings. A systematic review of empirical studies. Computers in Human Behavior, 63, 490–501. https://doi.org/10.1016/j.chb.2016.05.057
Preiner, J. (2008). Introducing dynamic mathematics software to mathematics teachers: the case of GeoGebra [Doctoral dissertation in Mathematics Education]. Austria: Faculty of Natural Sciences, University of Salzburg. Retrieved from http://www.pucrs.br/ciencias/viali/tic_literatura/teses/Preiner_Judith.pdf
Şad, S. N., & Göktaş, Ö. (2014). Preservice teachers’ perceptions about using mobile phones and laptops in education as mobile learning tools. British Journal of Educational Technology, 45(4), 606–618. https://doi.org/10.1111/bjet.12064
Sawilowsky, S., Kelley, D. L., Blair, R. C., & Markman, B. S. (1994). Meta-analysis and the Solomon four-group design. The Journal of Experimental Education, 62(4), 361–376. https://doi.org/10.1080/00220973.1994.9944140
Schumann, H., & Green, D. (2000). New protocols for solving geometric calculation problems incorporating dynamic geometry and computer algebra software. International Journal of Mathematical Education in Science and Technology, 31(3), 319–339. https://doi.org/10.1080/002073900287110
Skryabin, M., Zhang, J., Liu, L., & Zhang, D. (2015). How the ICT development level and usage influence student achievement in reading, mathematics, and science. Computers & Education, 85, 49–58. https://doi.org/10.1016/j.compedu.2015.02.004
Solomon, R. L. (1949). An extension of control group design. Psychological Bulletin, 46(2), 137. https://doi.org/10.1037/h0062958
Swain, C., & Pearson, T. (2002). Educators and technology standards: Influencing the digital divide. Journal of Research on Technology in Education, 34(3), 326–335. https://doi.org/10.1080/15391523.2002.10782353
Taleb, Z., Ahmadi, A., & Musavi, M. (2015). The effect of m-learning on mathematics learning. Procedia-Social and Behavioral Sciences, 171, 83–89. https://doi.org/10.1016/j.sbspro.2015.01.092
Tondeur, J., Forkosh-Baruch, A., Prestridge, S., Albion, P., & Edirisinghe, S. (2016). Responding to challenges in teacher professional development for ICT integration in education. Educational Technology and Society, 19(3), 110–120. Retrieved from www.jstor.org/stable/jeductechsoci.19.3.110.
Westera, W. (2004). On strategies of educational innovation: Between substitution and transformation. Higher Education, 47(4), 501–517. https://doi.org/10.1023/B:HIGH.0000020875.72943.a7
Whitman, D. S., Van Rooy, D. L., Viswesvaran, C., & Alonso, A. (2008). The susceptibility of a mixed model measure of emotional intelligence to faking: a Solomon four-group design. Psychology Science, 50(1), 44. Retrieved from https://www.psychologie-aktuell.com/fileadmin/download/PschologyScience/1-2008/05_Whitman.pdf
Zakaria, E., & Daud, M. Y. (2013). The role of technology: Moodle as a teaching tool in a graduate mathematics education course. Asian Journal of Management Science & Education, 2(4), 46–52. Retrieved from http://www.ajmse.leena-luna.co.jp/AJMSEPDFs/Vol.2(4)/AJMSE2013(2.4-04).pdf
Zakaria, E., & Lee, L. S. (2012). Teacher’s perceptions toward the use of GeoGebra in the teaching and learning of Mathematics. Journal of Mathematics and Statistics, 8(2), 253–257. https://doi.org/10.3844/jmssp.2012.253.257