Partial meanings of the derivative in university textbooks in engineering education
Abstract
The relevance of calculus in engineering education has raised interest in the study of its learning and in the construction of meanings associated with the objects that compose it. The meanings that circulate in the classrooms are influenced by resources and reference materials that teachers use, such as textbooks. Therefore, it is relevant to identify which meanings are promoted in those materials. This article presents an analysis of the meanings that some books promote on the concept of derivative in engineering education, based on the ontosemiotic approach to mathematical knowledge. The observations were contrasted with the partial meanings that the derivative has had throughout history. It was noted that the partial meaning is privileged, which corresponds to the last stage of its historical evolution, with which it is intended to achieve a generalization in its study, but which moves away from an intuitive approach that could be useful for the students’ learning.
Keywords
Engineering education, Mathematics education, Calculus, Textbooks
References
- Arcos, J. (2008). Cálculo infinitesimal para estudiantes de ingeniería. Kali.
- Arcos, J. (2009). Cálculo multivariable para estudiantes de ingeniería. Kali.
- Arcos, J. (2019). Una presentación de los conceptos del cálculo, en escuelas de ingeniería, no centrada en
- la definición de límite. El cálculo y su enseñanza. Enseñanza de las Ciencias y la Matemática, 12(1),
- -59.
- Bingolbali, E., Monaghan, J., & Roper, T. (2007). Engineering students’ conceptions of the derivative
- and some implications for their mathematical education. International Journal of Mathematical
- Education in Science and Technology, 38(6), 763-777. https://doi.org/10.1080/00207390701453579. DOI: https://doi.org/10.1080/00207390701453579
- Burgos, M., Bueno, S., Godino, J., & Pérez, O. (2021). Onto-semiotic complexity of the Definite Integral.
- Implications for teaching and learning Calculus. REDIMAT, Journal of Research in Mathematics
- Education, 10(1), 4-40. https://doi.org/10.17583/redimat.2021.6778 DOI: https://doi.org/10.17583/redimat.2021.6778
- Courant, R., Robbins, H., & Stewart, I. (2002). ¿Qué son las matemáticas? Fondo de Cultura Económica.
- Cuevas, O., Larios, V., Peralta, J., & Jiménez, A. (2018). Mathematical knowledge of students who aspire
- to enroll in engineering programs. International Electronic Journal of Mathematics Education, 13(3),
- -169. https://doi.org/10.12973/iejme/3832 DOI: https://doi.org/10.12973/iejme/3832
- Duval, R. (1993). Registres de représentation sémiotique et fonctionnement cognitif de la pensée.
- Annales de Didactique et de Sciences Cognitives, 5, 37-65.
- Font, V., & Godino, J. (2006). La noción de configuración epistémica como herramienta de análisis de
- textos matemáticos: su uso en la formación de profesores. Educação Matemática Pesquisa, 8(1), 67-
- Gnedenko, B., & Khalil, Z. (1979). The mathematical education of engineers. Educational Studies in
- Mathematics, 10(1), 71-83. https://doi.org/10.1007/BF00311176 DOI: https://doi.org/10.1007/BF00311176
- Godino, J., & Batanero, C. (1994). Significado institucional y personal de los objetos matemáticos.
- Recherches en Didactique des Mathématiques, 14(3), 325-355.
- Godino, J., Batanero, C., & Font, V. (2007). The onto-semiotic approach to research in mathematics DOI: https://doi.org/10.1007/s11858-006-0004-1
- education. ZDM. The International Journal on Mathematics Education, 39(1-2), 127-135.
- Godino, J., Burgos, M., & Gea, M. (2021). Analysing theories of meaning in mathematics education
- from the onto-semiotic approach. International Journal of Mathematical Education in Science and
- Technology, 0(0), 1-28. https://doi.org/10.1080/0020739X.2021.1896042 DOI: https://doi.org/10.1080/0020739X.2021.1896042
- Godino, J., Contreras, Á., & Font, V. (2006). Análisis de procesos de instrucción basado en el enfoque
- ontológico-semiótico de la cognición matemática. Recherches en Didactique des Mathématiques,
- (1), 39-88.
- Larios, V., Páez, R., & Moreno, H. (2021). Significados sobre la derivada evidenciados por alumnos
- de carreras de ingeniería en una universidad mexicana. Avances de Investigación en Educación
- Matemática, (20), 105-124. https://doi.org/10.35763/aiem20.4002 DOI: https://doi.org/10.35763/aiem20.4002
- Larios, V., Spíndola, P., Cuevas, O., & Castro, J. (2021). Conflictos semióticos y niveles de algebrización en
- aspirantes a Ingeniería. Educación Matemática, 33(3), 263-289. https://doi.org/10.24844/EM3303.10 DOI: https://doi.org/10.24844/EM3303.10
- Mochón, S. (1994). Quiero entender el cálculo. Grupo Editorial Iberoamérica.
- Neubert, J., Khavanin, M., Worley, D., & Kaabouch, N. (2014). Minimizing the institutional change
- required to augment calculus with real-world engineering problems. PRIMUS: Problems, Resources,
- and Issues in Mathematics Undergraduate Studies, 24(4), 319-334. https://doi.org/10.1080/10511970
- .2013.879970
- Piaget, J., & García, R. (1998). Psicogénesis e historia de la ciencia. Siglo XXI Editores.
- Pino-Fan, L., Font, V., Gordillo, W., Larios, V., & Breda, A. (2018). Analysis of the meanings of the
- antiderivative used by students of the first engineering courses. International Journal of Science and
- Mathematics Education, 16(6), 1091-1113. https://doi.org/10.1007/s10763-017-9826-2 DOI: https://doi.org/10.1007/s10763-017-9826-2
- Pino-Fan, L., Godino, J., & Font, V. (2011). Faceta epistémica del conocimiento didáctico-matemático
- sobre la derivada. Educação Matematica Pesquisa, 13(1), 141-178.
- Rojas, R. (2018). El lenguaje de las matemáticas. Fondo de Cultura Económica; Conacyt.
- Romo-Vázquez, A. (2014). La modelización matemática en la formación de ingenieros. Educación
- Matemática, 26(especial de 25 años), 314-338.
- Smith, R., & Minton, R. (2000). Cálculo, Tomo 1. McGraw-Hill Interamericana.
- Smith, R., & Minton, R. (2001). Cálculo, Tomo 2. McGraw-Hill Interamericana.
- Sol, T. (2017). Análisis de argumentación y demostración en libros de texto universitarios para cálculo
- diferencial [Tesis de maestría, Universidad Autónoma de Querétaro]. Repositorio Institucional
- UAQ. http://ri-ng.uaq.mx/handle/123456789/1115
- Spivak, M. (2005). Cálculo infinitesimal. Reverté.
- Stewart, J. (1999). Cálculo diferencial e integral. International Thomson Editores.
- Stewart, J. (2018). Cálculo de varias variables. Cengage Learning Editores.