Skip to main navigation menu Skip to main content Skip to site footer

Computational Literacy in Education: Contributions to the Development of Critical Thinking and Social Participation

Abstract

In the last years, many agencies are changing their curriculums to include Computer Science Education in mandatory schooling. The expansion of computational systems to the many aspects of human life allows both, widening human cognition, and requiring computational knowledge and practices as key components of citizenship education. This challenge is immersed in a context with deep digital gaps that contribute to unequally developing the possibilities of computational literacy, thinking and participation among the population. Relying on a systematic review, this article analyzes how specialized literature defined these notions for schooling purposes. Results show that computational literacy is mostly associated with artificial intelligence and programming. This risks reducing the disciplinary field to these hegemonic areas. At the same time, computational participation approaches are linked to the social impact of computer systems. These contributions deepen the discussion, definition and analysis of computational literacy in schools, particularly in the Latin American context where there are few empirical studies in this area.

Keywords

computational literacy, computational participation, computational thinking, formal education, digital and computational divide

PDF (Español) HTML (Español) EPUB (Español)

References

  1. Basogain, X., Olabe, M. Á., Olabe, J. C. & Rico, M. J. (2018). Computational thinking in pre-university blended learning classrooms. Computers in Human Behaviour, 80, 412-419. https://doi.org/10.1016/j.chb.2017.04.058
  2. Blikstein P., Moghadam S. H., Fincher S. A. & Robins, A. (2019). Computing education: Literature review and voices from the field. In S. A. Fincher, A. Robins (Eds.), The Cambridge handbook of computing education research (pp. 56-78). Cambridge University Press. https://doi.org/10.1017/9781108654555.004
  3. Brennan, K. & Resnick, M. (2012). New frameworks for studying and assessing the development of computational thinking. Proceedings of the 2012 Annual Meeting of the American Educational Research Association. Vancouver: American Educational Research Association.
  4. Bocconi, S., Chioccariello, A., Dettori, G., Ferrari, A. & Engelhardt, K. (2016). Developing computational thinking in compulsory education-Implications for policy and practice (No. JRC104188). Joint Research Centre (Seville site). https://dx.doi.org/10.2791/792158
  5. Burke, Q., O’Byrne, W. I. & Kafai, Y. B. (2016). Computational participation: Understanding coding as an extension of literacy instruction. Journal of adolescent & adult literacy, 59(4), 371-375. https://doi.org/10.1002/jaal.496
  6. Cuban, L. (2001). Oversold and underused: Computers in the classroom. Harvard University Press. https://doi.org/10.4159/9780674030107
  7. De Paula, B. H., Burn, A., Noss, R. & Valente, J. A. (2018). Playing Beowulf: Bridging computational thinking, arts and literature through game making. International Journal of Child-Computer Interaction, 16, 39-46. https://doi.org/10.1016/j.ijcci.2017.11.003
  8. Dichev, C. & Dicheva, D. (2017). Towards data science literacy. Procedia Computer Science, 108, 2151-2160. https://doi.org/10.1016/j.procs.2017.05.240
  9. DiSessa, A. (2000). Changing minds: Computers, learning, and literacy. MIT Press. https://mitpress.mit.edu/9780262541329/
  10. Echeveste, M. E. & Martínez, M. C. (2022). El rol de los capitales digitales en Escuelas Técnicas de Programación y las luchas por reducir las brechas digitales. Revista de Sociología de la EducaciónRASE, 15(2), 244-264. http://dx.doi.org/10.7203/RASE.15.2.23943
  11. Fraillon, J., Ainley, J., Schulz, W., Friedman, T. & Duckworth, D. (2020). Preparing for life in a digital world: IEA International Computer and Information Literacy Study 2018 International Report (p. 297). Springer Nature.
  12. Gough, D. (2007). Weight of Evidence: A framework for the appraisal of the quality and relevance of evidence. Research Papers in Education, 22(2), 213-228. https://doi.org/10.1080/02671520701296189
  13. Hsu, T. C., Chang, S. C. & Hung, Y. T. (2018). How to learn and how to teach computational thinking: Suggestions based on a review of the literature. Computers & Education, 126, 296-310. https://doi.org/10.1016/j.compedu.2018.07.004
  14. Holmes, W., Bialik, M. & Fadel, C. (2022). Artificial intelligence and education: A critical view through the lens of human rights, democracy and the rule of law. Council of Europe Publishing.
  15. Irgens, G. A., Vega, H., Adisa, I. & Bailey, C. (2022). Characterizing children’s conceptual knowledge and computational practices in a critical machine learning educational program. International Journal of Child-Computer Interaction, 34, 100541. https://doi.org/10.1016/j.ijcci.2022.100541
  16. Jacob, S. R. & Warschauer, M. (2018). Computational thinking and literacy. Journal of Computer Science Integration, 1(1). https://doi.org/10.26716/jcsi.2018.01.1.1
  17. Kelly, A., Finch, L., Bolles, M. & Shapiro, R. B. (2018). BlockyTalky: New programmable tools to enable students’ learning networks. International Journal of Child-Computer Interaction, 18, 8-18. https://doi.org/10.1016/j.ijcci.2018.03.004
  18. Ko, A. J., Oleson, A., Ryan, N., Register, Y., Xie, B., Tari, M., Davidson, M., Druga, S. & Loksa, D. (2020). It is time for more critical CS education. Communications of the ACM, 63(11), 31-33. https://dl.acm.org/doi/pdf/10.1145/3424000
  19. Lockridge, T., Paz, E. & Johnson, C. (2017). The Kairos Preservation Project. Computers and Composition, 46, 72-86. https://doi.org/10.1016/j.compcom.2017.09.002
  20. Losh, E. (2014). From authorship to authoring: Critical literacy, expert users, and proprietary software. Computers and Composition, 33, 40-49. https://doi.org/10.1016/j.compcom.2014.07.004
  21. Miao, F., & Holmes, W. (2021). International Forum on AI and the Futures of Education, developing competencies for the AI Era, 7-8 December 2020: synthesis report. UNESCO.
  22. Mannila, L., Leinonen, T., Bauters, M. & Veermans, M. (2023). Student and teacher co-agency when combining CT with arts and design in a cross-curricular project. Computers and Education Open, 4, 100132. https://doi.org/10.1016/j.caeo.2023.100132
  23. Monjelat, N., Peralta, N. & San Martín, P. (2021). Saberes y prácticas con TIC: ¿instrumentalismo o complejidad? Un estudio con maestros de primaria argentinos. Perfiles Educativos, 43(171), 84-101.
  24. https://doi.org/10.22201/iisue.24486167e.2021.171.59225
  25. Ng, D. T. K., Leung, J. K. L., Chu, S. K. W. & Qiao, M. S. (2021). Conceptualizing AI literacy: An exploratory review. Computers and Education: Artificial Intelligence, 2, 100041. https://doi.org/10.1016/j.caeai.2021.100041
  26. Ottenbreit-Leftwich, A. T., Kwon, K., Brush, T. A., Karlin, M., Jeon, M., Jantaraweragul, K., Guo, M., Nadir, H., Gok, F. & Bhattacharya, P. (2021). The impact of an issue-centered problem-based learning curriculum on 6th grade girls’ understanding of and interest in computer science. Computers and Education Open, 2, 100057. https://doi.org/10.1016/j.caeo.2021.100057
  27. Ouzzani, M., Hammady, H., Fedorowicz, Z. & Elmagarmid, A. (2016). Rayyan — a web and mobile app for systematic reviews. Systematic Reviews, 5. 10.1186/s13643-016-0384-4
  28. Papavlasopoulou, S., Giannakos, M. N. & Jaccheri, L. (2019). Exploring children’s learning experience in constructionism-based coding activities through design-based research. Computers in Human Behaviour, 99, 415-427. https://doi.org/10.1016/j.chb.2019.01.008
  29. Sáez-López, J. M., Román-González, M. & Vázquez-Cano, E. (2016). Visual programming languages integrated across the curriculum in elementary school: A two-year case study using “Scratch” in five schools. Computers & Education, 97, 129-141. https://doi.org/10.1016/j.compedu.2016.03.003
  30. Scasso, M., Cura, D., Marino, V. & Kaplan, L. (2019). Especializaciones en didáctica de las Ciencias de la Computación. Evaluación de procesos y resultados. Informe Final. Program.AR y Fundación Quántitas. https://fundacionsadosky.org.ar/wp-content/uploads/2023/03/Informe-final-Evaluacion-especializaciones.pdf
  31. Steinbauer, G., Kandlhofer, M., Chklovski, T., Heintz, F. & Koenig, S. (2021). A differentiated discussion about AI education K-12. KI-Künstliche Intelligenz, 35(2), 131-137. https://link.springer.com/article/10.1007/s13218-021-00724-8
  32. Su, J. & Zhong, Y. (2022). Artificial Intelligence (AI) in early childhood education: Curriculum design and future directions. Computers and Education: Artificial Intelligence, 3, 100072. https://doi.org/10.1016/j.caeai.2022.10002
  33. Simari, G. R. (2013). Los fundamentos computacionales como parte de las ciencias básicas en las terminales de la disciplina Informática. En VIII Congreso de Tecnología en Educación y Educación en Tecnología. http://sedici.unlp.edu.ar/handle/10915/27579
  34. Terigi, F. (2020). Escolarización y pandemia: alteraciones, continuidades, desigualdades. REVCOM, 11. https://doi.org/10.24215/24517836e039
  35. Terroba, M., Ribera, J. M., Lapresa, D. & Anguera, M. T. (2021). Propuesta de intervención mediante un robot de suelo con mandos de direccionalidad programada: análisis observacional del desarrollo del pensamiento computacional en educación infantil. Revista de psicodidáctica, 26(2), 143-151. https://doi.org/10.1016/j.psicod.2021.03.001
  36. Torres, M., Sandrone, D. & Lawler, D. (2022). Índice EME: uma ferramenta para a avaliação do design de hardware e software na educação infantil. Revista Intersaberes, 17(42), 820-839. https://www.revistasuninter.com/intersaberes/index.php/revista/article/view/2371
  37. Turner, R. (2018). Computational Artifacts. Towards a Philosophy of Computer Science. Springer. University of Essex. https://link.springer.com/book/10.1007/978-3-662-55565-1
  38. Vourletsis, I. y Politis, P. (2022). Exploring the effect of remixing stories and games on the development of students’ computational thinking. Computers & Education Open, 3, 100069. https://doi.org/10.1016/j.caeo.2021.100069
  39. Weintrop, D. & Wilensky, U. (2019). Transitioning from introductory block-based and text-based environments to professional programming languages in high school computer science classrooms. Computers & Education, 142, 103646. https://doi.org/10.1016/j.compedu.2019.103646
  40. Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33-35. https://doi.org/10.1145/1118178.1118215
  41. Yadav, A., Burkhart, D., Moix, D., Snow, E., Bandaru, P. & Clayborn, L. (2015). Sowing the seeds: A landscape study on assessment in secondary computer science education. Computer Science Teachers Association, NY.

Downloads

Download data is not yet available.

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.